Abstract

Vascular diseases, such as hypertension, atherosclerosis, cerebrovascular, and peripheral arterial diseases, present major clinical and public health challenges, largely due to their common underlying process: vascular remodeling. This process involves structural alterations in blood vessels, driven by a variety of molecular mechanisms. The inhibitor of DNA-binding/differentiation-3 (ID3), a crucial member of ID family of transcriptional regulators, has been identified as a key player in vascular biology, significantly impacting the progression of these diseases. This review explores the role of ID3 in vascular remodeling, emphasizing its involvement in processes such as apoptosis, cell proliferation, and extracellular matrix regulation. Furthermore, we examine how oxidative stress, intensified by exposure to estrogenic endocrine disruptors (EEDs) like polychlorinated biphenyls (PCBs) and bisphenol A (BPA), affects ID3 activity and contributes to vascular disease. Understanding the interaction between ID3 signaling and EED exposure provides critical insights into the molecular mechanisms underlying vascular remodeling and its role in the development and progression of vascular diseases.

Publication Date

12-26-2024

Content Type

Article

PubMed ID:

39846697

Additional Authors:

Additional authors and institutional affiliations

Comments

This open access article is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. © 2024

Open Access

Available to all.

Share

COinS