Background: Merkel cell carcinoma (MCC) is a rare neuroendocrine skin cancer. Prior to the advent of immunotherapy, treatment options were limited. In our study, we evaluate the impact of tumor cell PD-L1 expression and tumor immune microenvironment on survival in MCC patients who were not treated with immune checkpoint inhibitors.

Methods: Clinical data and tissue samples were collected from 78 patients with confirmed MCC treated at Dana-Farber Cancer Institute. Specimens were analyzed for the distribution of PD-L1 by immunohistochemistry staining (IHC) and standardized analysis. Results were correlated with survival data.

Results: In this study, membrane and cytoplasmic MCC tumor cell staining for PD-L1 was detected in 22.4% (15 of 67) of cases and PD-L1 staining of intratumoral microvessels and PD-L1 positive immune cells at the infiltrative margins of the tumor in 92.5% (62 of 67) of cases. In patients untreated with immune checkpoint inhibitors, median overall survival was not different for patients based on PD-L1 expression (PD-L1+ 64 months vs. PD-L1- not reached; HR = 1.26, 95% CI: 0.46–3.45; p = 0.60).

Conclusion: PD-L1 expression is frequently detected in MCC tumor cells and tumor microenvironment. PD-L1 expression did not affect prognosis in this cohort that had not received PD-1/L1 blockade.

Publication Date


Content Type


PubMed ID:


Additional Authors:

Additional authors and institutional affiliations


Copyright © 2020 Hanna, Kacew, Tanguturi, Grote, Vergara, Brunkhorst, Rabinowits, Thakuria, LeBoeuf, Ihling, DeCaprio and Lorch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Open Access

Available to all.