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Simple Summary: Radiation therapy (RT) plans deviating from the standard could likely compromise
the efficacy of a pre-specified intervention for any clinical trial due either to insufficient coverage of the
target area and/or excessive radiation doses to healthy tissues. Knowledge-based machine learning
tools utilize high-quality data and generate patient-specific optimization objectives that produce RT
plans that comply better with treatment protocol specifications. In this study, we investigated the use
of a knowledge-based planning (KBP) model to evaluate the quality of RT plans in two clinical trials,
one for glioblastoma and the other for head and neck cancer. The outcomes of this research indicate
that this tool can assist RT quality assessments in multi-center clinical trials.

Abstract: The quality of radiation therapy (RT) treatment plans directly affects the outcomes of
clinical trials. KBP solutions have been utilized in RT plan quality assurance (QA). In this study, we
evaluated the quality of RT plans for brain and head/neck cancers enrolled in multi-institutional
clinical trials utilizing a KBP approach. The evaluation was conducted on 203 glioblastoma (GBM)
patients enrolled in NRG-BN001 and 70 nasopharyngeal carcinoma (NPC) patients enrolled in NRG-
HN001. For each trial, fifty high-quality photon plans were utilized to build a KBP photon model. A
KBP proton model was generated using intensity-modulated proton therapy (IMPT) plans generated
on 50 patients originally treated with photon RT. These models were then applied to generate KBP
plans for the remaining patients, which were compared against the submitted plans for quality
evaluation, including in terms of protocol compliance, target coverage, and organ-at-risk (OAR)
doses. RT plans generated by the KBP models were demonstrated to have superior quality compared
to the submitted plans. KBP IMPT plans can decrease the variation of proton plan quality and could
possibly be used as a tool for developing improved plans in the future. Additionally, the KBP tool
proved to be an effective instrument for RT plan QA in multi-center clinical trials.
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1. Introduction

Glioblastoma is the most aggressive primary malignant brain tumor found in humans,
with 5-year overall survival less than 7% after surgery and conventional chemoradio-
therapy [1,2]. The conventional therapeutic regimen for GBM comprises resection to the
greatest extent safely feasible, followed by concurrent and adjuvant temozolomide (TMZ)
chemotherapy and RT [3–5]. Despite enhancements in patient survival with this combina-
torial approach, local disease control remains a challenge and a major cause of therapeutic
failure [6]. In an endeavor to improve outcomes, NRG Oncology initiated the phase II
randomized trial NRG-BN001 to assess the impact of escalated RT doses in conjunction
with TMZ for GBM patients. This trial also aims to compare the benefits of proton beam
therapy versus photon IMRT, potentially enabling higher RT doses without escalating
toxicity and specifically diminishing the risk of lymphopenia, which is supported by level
1 evidence. Indirect data suggest reduced survival with more severe lymphopenia.

Nasopharyngeal carcinoma (NPC) poses significant challenges for RT planning due to
the complexity of planning target volumes (PTVs), the necessity for simultaneous integrated
boost techniques, and the imperative of sparing multiple OARs [7,8]. NRG-HN001, a phase
II/III multi-institutional clinical trial, targets patients diagnosed with NPC to investigate
and optimize therapeutic strategies. In addition, both NRG-BN001 and NRG-HN001
represent pivotal investigations into the application of proton therapy within phase III
clinical trials. The results of these trials are anticipated to provide evidence regarding
whether proton therapy can positively influence patient outcomes, specifically in terms of
augmenting efficacy and/or decreasing toxicities.

The correlation between adherence to established guidelines in RT treatment planning
and clinical outcomes is well-documented; deviations from such protocols are linked with
diminished survival rates, increased probability of disease progression, and a greater risk
of RT-induced complications. Consequently, rigorous QA of RT plans is a pivotal QA
component for clinical trials that incorporate RT [9–11].

The Imaging Radiation Oncology Core (IROC) of the National Clinical Trials Network
has conducted QA reviews of all treatment plans of patients enrolled in NRG Oncology
clinical trials. Although this process can easily identify plans that deviate from protocol-
defined criteria, it does not capture the intricacies and challenges inherent in individual
patient plans. Moreover, the current IROC QA process does not offer insights or possibilities
for enhancing the quality of the treatment plans.

The rapid development of Artificial Intelligence (AI) in recent years offers a promising
solution to these challenges. Knowledge-based planning (KBP) is a specialized application
of AI designed to improve radiation therapy planning by using historical data to build
predictive models. These models, trained on high-quality, protocol-compliant plans, learn
the optimal dosimetric parameters based on patient geometry, enabling the creation of
customized radiation therapy (RT) plans [12,13]. KBP significantly reduces the variability
that often arises in RT planning from differences in planner experience and institutional
practices [14–17]. By providing a data-driven benchmark for plan quality, KBP promotes
consistency and efficiency in plan evaluation across multiple treatment centers, which is
particularly valuable in multi-center clinical trials.

Although several recent publications have shown the feasibility of KBP-assisted intensity-
modulated radiation therapy (IMRT) treatment planning in clinical settings [17–22], imple-
menting knowledge-based proton planning in clinical trial evaluation is in its infancy [23].
Prior research has illuminated the application of the KBP model in evaluating the quality
of photon plans submitted to NRG-HN001. Building on this foundation, our current study
aims to extend the evaluation framework to include both photon and proton treatment plans
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submitted to the NRG-BN001 trial as well as to assess the quality of NRG-HN001 IMPT plans
utilizing a knowledge-based approach. This comprehensive assessment seeks to leverage
the insights gleaned from KBP models to ensure and enhance the quality of treatment plans
across different modalities and clinical scenarios.

2. Materials and Methods
2.1. Patient Cohort

This research incorporated a study population of 203 patients diagnosed with glioblas-
toma (GBM) who were part of the NRG-BN001 clinical trial and 70 patients with nasopha-
ryngeal carcinoma (NPC) who participated in the NRG-HN001 study. In the context of the
NRG-BN001 trial, 139 patients received photon therapy, and 64 patients received proton
therapy, with both groups undergoing dose-intensified radiotherapy with a simultaneous
Integrated Boost. This latter group was further divided into 36 cases treated with IMPT
and 28 cases undergoing passive scattered (PS) proton therapy. All participants in this trial
were prescribed 50 Gy (relative biological effectiveness [RBE] for protons) in 30 fractions
to the FLAIR or T2 abnormality, with a simultaneous integrated boost to 75 Gy ([RBE] for
protons) to the postoperative cavity and residual enhancing disease. Regarding the NRG-
HN001 trial, there were 50 patients treated with IMRT and 20 patients treated with proton
therapy. The prescribed dose was either 69.96 Gy in 33 fractions or 70 Gy in 35 fractions.
Both trials set forth specific dosimetric compliance standards. These standards, relevant
to both targets and OARs, are elaborated in Supplementary Table S1 and Supplementary
Table S2, respectively. Any structures not complying with the protocol’s accepted variation
thresholds are categorized as unacceptable deviations.

2.2. Knowledge-Based Planning and Model Configuration
2.2.1. Photon Model

Fifty per-protocol IMRT plans from the NRG-BN001 photon group were chosen to
develop the photon RapidPlan® RT (Varian Medical System, Palo Alto, CA, USA) model.
The initial parameters of the model were established in accordance with the priorities
provided in the protocol. Structures assigned a higher priority level were given a greater
priority value. These same plans also served as an internal validation cohort, aiding in
the refinement of model parameters. The final KBP photon model’s defined objective
list is detailed in Supplementary Table S3. For the re-optimization of photon plans, the
Photon Optimizer (PO) for IMRT (version 16.0.2), the Dose-Volume Histogram (DVH)
Estimation Algorithm (version 16.0.2) for DVH estimation, and the Anisotropic Analytical
Algorithm (AAA, version 16.0.2) for volume and portal dose computation were selected as
the calculation models.

2.2.2. Proton Models

For each trial, fifty patients enrolled in photon cohorts were manually re-planned with
the IMPT technique using golden beam data of the ProBeam proton therapy system. The
volume dose was calculated based on the Proton Convolution Superposition algorithm
(PCS, v. 16.0.2) with a 5 mm spot size and 2.5 mm resolution. The fluence-based Nonlin-
ear Universal Proton Optimizer (NUPO, v. 16.0.2) and the multifield simultaneous spot
optimization method were applied to optimize dose distribution.

The 50 manually generated IMPT plans were evaluated based on the dosimetric
compliance criteria specified in each protocol and were subsequently utilized to train the
preliminary models. To enhance the performance of these models, a closed-loop iteration
was implemented by re-optimizing the library IMPT plans using the initial RP model
and updating the model with the re-optimized cases. For NRG-BN001, the KBP IMPT
models also include three control regions aimed at optimizing the dose distribution. These
additional regions comprised the Planning Risk Volume (PRV), defined as PTV_5000 mi-
nus (PTV_7500 plus a 5 mm margin); PTV_5000 opt, delineated as PTV_5000 excluding
PTV_7500; and a ‘ring’ region, specified as a 1 cm margin encircling PTV_5000. Supplemen-
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tary Tables S3 and S4 list the optimization objectives and priorities specified in the final
KBP proton model for NRG-BN001 and NRG-HN001, respectively.

2.3. Plan Evaluation

The plan quality of the submitted photon and proton plans was assessed through
comparison with the KBP photon and proton plans. The evaluation was conducted based
on protocol compliance, target dose conformality index (CI) and homogeneity index (HI),
and the dosimetric endpoints, including PTVs and critical structures [24,25]. IROC has de-
veloped a QA workflow to evaluate RT plans. This systematic approach assesses adherence
to the protocol-defined dose constraints and categorizes RT plans into three distinct scores:
per-protocol: score 1, variation acceptable: score 2, and deviation unacceptable: score 3.

The conformality index was calculated based on the Paddick index [26], defined as:

CI =
TV2

PIV
PIV × TV

(1)

where TVPIV is the target volume encompassed by the prescription isodose, PIV is the
prescription isodose volume, and TV is the target volume. The homogeneity index was
defined as the ratio of the maximum point dose Dmax and the prescribed dose DRx [27]:

HI =
Dmax

DRx
(2)

To evaluate the differences in quality between the plans submitted initially and those
derived from KBP, mean dosimetric parameters were assessed. Furthermore, a paired T-test
was employed to conduct a statistical comparison.

3. Results
3.1. NRG-BN001 Photon Plan Quality Review

Table 1 lists the results of the 139 photon plans submitted to NRG-BN001 using the
IROC QA procedure before and after KBP model optimization. The KBP plans show
substantially better quality; the number of cases that failed to meet the per-protocol and
variation acceptable criteria dropped by 39% and 60.1%, respectively.

Table 1. Comparison of IROC QA scores between the submitted NRG-BN001 photon plans and the
KBP plans.

Structures Dosimetric Parameter
Photon Submitted Photon KBP

Score 1 Score 2 Score 3 Score 1 Score 2 Score 3

PTV_5000 D95%[Gy] 110 27 2 130 9 0

PTV_7500 D95%[Gy] 105 26 8 111 19 9

PTV_7500 D10%[Gy] 101 35 3 138 1 0

PTV_7500 D0.03cc[Gy] 84 47 8 126 13 0

SpinalCord D0.03cc[Gy] 139 0 0 139 0 0

BrainStemCore D0.03cc[Gy] 125 13 1 126 13 0

BrainStemSurf D0.03cc[Gy] 121 18 0 124 15 0

OpticChiasm_PRV D0.03cc[Gy] 129 10 0 130 9 0

OpticNerve_L_PRV D0.03cc[Gy] 135 3 1 134 5 0

OpticNerve_R_PRV D0.03cc[Gy] 133 5 1 132 6 1

Retina_L D0.03cc[Gy] 138 1 0 139 0 0

Retina_R D0.03cc[Gy] 139 0 0 137 2 0

Brain D5% [Gy] 136 2 1 139 0 0

Lens_L D0.03cc[Gy] 126 11 2 118 20 1

Lens_R D0.03cc[Gy] 126 12 1 123 16 0

Score 1: per-protocol; Score 2: variation acceptable; Score 3: deviation unacceptable.
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Table 2 presents a detailed dosimetric comparison between the initially submitted
intensity-modulated radiation therapy (IMRT) plans and the KBP plans. On average, both
groups of plans demonstrate satisfactory target coverage, adhering to the specified protocol
constraints for all anatomical structures. There is a notable equivalence in target dose
coverage (PTV_7500 D95%[Gy]: ∆ = 0.2 ± 1.9 Gy), conformality index (∆ = 0.0 ± 0.20), and
the homogeneity index (∆ = −0.02 ± 0.03) between the submitted and KBP plans. The
application of KBP is particularly advantageous for organs of higher priority, as it facilitates
a reduction in dosage. This improvement is evident in the spinal cord (∆ = −0.9 ± 3.0),
brain stem_core/surf (∆ = −1.7 ± 6.2 and −2.2 ± 5.9), optic chiasm_PRV (∆ = −3.6 ± 6.8),
and optic nerve_PRV (∆ = −2.6 ± 5.8). Figure 1 further illustrates this outcome, showcasing
a dose wash comparison for an exemplary case from the photon cohort between the
submitted and KBP plans.

Table 2. Dosimetric comparison of submitted and KBP photon plans for NRG-BN001.

Structures Dosimetric
Parameter

Photon
Submitted Photon KBP p Value

PTV_5000 D95%[Gy] 50.9 ± 1.5 51.7 ± 1.2 <0.001 *

PTV_7500 D95%[Gy] 74.2 ± 2.9 74.0 ± 2.8 0.001 *

PTV_7500 D10%[Gy] 78.1 ± 1.6 76.7 ± 0.8 <0.001 *

PTV_7500 D0.03cc[Gy] 79.8 ± 1.9 78.5 ± 1.3 <0.001 *

Spinal Cord D0.03cc[Gy] 6.6 ± 5.9 5.6 ± 5.1 <0.001 *

BrainStem_Core D0.03cc[Gy] 46.6 ± 11.6 44.6 ± 14.0 0.019 *

BrainStem_Surf D0.03cc[Gy] 46.1 ± 12.7 43.6 ± 14.7 <0.001 *

OpticChiasm_PRV D0.03cc[Gy] 39.7 ± 16.3 35.9 ± 16.9 <0.001 *

OpticNerve_PRV D0.03cc[Gy] 33.7 ± 20.1 31.1 ± 20.2 <0.001 *

Retina D0.03cc[Gy] 16.4 ± 12.3 17.5 ± 12.1 0.054

Brain D5% [Gy] 72.1 ± 7.0 72.42 ± 6.2 0.803

Lens D0.03cc[Gy] 4.6 ± 2.7 5.3 ± 2.6 <0.001 *

HIPTV_7500 1.06 ± 0.02 1.04 ± 0.02 <0.001 *

CIPTV_7500 1.00 ± 0.18 1.00 ± 0.10 0.39
The paired t-test was employed; asterisks (*) indicate a statistically significant difference between the submitted
and KBP plan.

3.2. NRG-BN001 Proton Plan Quality Review

Table 3 presents the IROC QA review results for the 64 proton plans submitted to
NRG-BN001 and the KBP IMPT plans. The KBP plans show substantially better quality;
the number of cases that failed to meet the per-protocol and variation acceptable criteria
was reduced by 77.6% and 66.7%, respectively.

Table 4 methodically outlines the average variations in pivotal dosimetric parameters
between the originally submitted proton plans and the KBP IMPT plans. Notably, the
maximum dose imparted to the brain stem_core, brain stem_surf, optic chiasm_PRV, optic
nerve_PRV, and retina demonstrated a significant reduction (p < 0.05) in the KBP IMPT plans.
The reductions were quantified as 10.3 ± 6.1 Gy, 12.8 ± 8.2 Gy, 10.6 ± 10.2 Gy, 4.3 ± 5.3 Gy,
and 4.2 ± 6.9 Gy for the IMPT group and 9.7 ± 9.6 Gy, 10.3 ± 8.6 Gy, 12.8 ± 13.2 Gy,
5.4 ± 8.0 Gy, and 4.1 ± 8.2 Gy for the PS group. Figure 2 provides a visual representation
of the dose distribution for a typical case within the proton cohort. In comparison to
the clinically submitted plan, the KBP IMPT plan exhibits significant enhancement in
both target coverage and OAR sparing. However, it is noteworthy that the KBP plan is
associated with an elevated maximum dose to the PTV and an increased volume of brain
tissue subjected to radiation exposure.
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inally submitted plan and the KBP plan was generated using the IMRT RapidPlan model. (A–C) 
Dose distribution of the clinical plan. (D–F) Dose distribution of the KBP plan. The KBP plan demon-
strates enhanced sparing of OARs with higher priority, including the brainstem, optic chiasm, and 
optic nerve. 
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Table 3 presents the IROC QA review results for the 64 proton plans submitted to 

NRG-BN001 and the KBP IMPT plans. The KBP plans show substantially better quality; 
the number of cases that failed to meet the per-protocol and variation acceptable criteria 
was reduced by 77.6% and 66.7%, respectively.  

Table 3. Comparison of IROC QA scores between the submitted NRG-BN001 proton plans and the 
KBP plans. 

Structures Dosimetric Parameter 
Proton Submitted Proton KBP 

Score 1 Score 2 Score 3 Score 1 Score 2 Score 3 
PTV_5000 D95%[Gy] 49 14 1 63 1 0 
PTV_7500 D95%[Gy] 37 22 5 61 1 2 
PTV_7500 D10%[Gy] 60 4 0 64 0 0 
PTV_7500 D0.03cc[Gy] 63 1 0 57 7 0 

SpinalCord D0.03cc[Gy] 64 0 0 64 0 0 
BrainStemCore D0.03cc[Gy] 61 3 0 64 0 0 
BrainStemSurf D0.03cc[Gy] 58 6 0 63 1 0 

OpticChiasm_PRV D0.03cc[Gy] 62 2 0 63 1 0 
OpticNerve_L_PRV D0.03cc[Gy] 61 3 0 64 0 0 
OpticNerve_R_PRV D0.03cc[Gy] 62 1 1 62 1 1 

Retina_L D0.03cc[Gy] 64 0 0 64 0 0 
Retina_R D0.03cc[Gy] 63 0 1 64 0 0 

Figure 1. Dose distribution of an example case in the photon cohort. The clinical plan was the originally
submitted plan and the KBP plan was generated using the IMRT RapidPlan model. (A–C) Dose
distribution of the clinical plan. (D–F) Dose distribution of the KBP plan. The KBP plan demonstrates
enhanced sparing of OARs with higher priority, including the brainstem, optic chiasm, and optic nerve.

Table 3. Comparison of IROC QA scores between the submitted NRG-BN001 proton plans and the
KBP plans.

Structures
Dosimetric
Parameter

Proton Submitted Proton KBP

Score 1 Score 2 Score 3 Score 1 Score 2 Score 3

PTV_5000 D95%[Gy] 49 14 1 63 1 0

PTV_7500 D95%[Gy] 37 22 5 61 1 2

PTV_7500 D10%[Gy] 60 4 0 64 0 0

PTV_7500 D0.03cc[Gy] 63 1 0 57 7 0

SpinalCord D0.03cc[Gy] 64 0 0 64 0 0

BrainStemCore D0.03cc[Gy] 61 3 0 64 0 0

BrainStemSurf D0.03cc[Gy] 58 6 0 63 1 0

OpticChiasm_PRV D0.03cc[Gy] 62 2 0 63 1 0

OpticNerve_L_PRV D0.03cc[Gy] 61 3 0 64 0 0

OpticNerve_R_PRV D0.03cc[Gy] 62 1 1 62 1 1

Retina_L D0.03cc[Gy] 64 0 0 64 0 0

Retina_R D0.03cc[Gy] 63 0 1 64 0 0

Brain D5%[Gy] 64 0 0 64 0 0

Lens_L D0.03cc[Gy] 63 0 1 64 0 0

Lens_R D0.03cc[Gy] 62 2 0 63 1 0

Score 1: per-protocol; Score 2: variation acceptable; Score 3: deviation unacceptable.
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Table 4. Comparison of dosimetric parameters in submitted and KBP proton plans of BN001
clinical trial.

Structures
Dosimetric
Parameter

IMPT PS

Clinical KBP p Value Clinical KBP p Value

PTV_5000 D95%[Gy] 50.9 ± 1.7 50.8 ± 0.4 0.772 50.3 ± 1.5 50.9 ± 0.35 0.037 *

PTV_7500 D95%[Gy] 73.3 ± 3.5 75.0 ± 1.4 <0.001 * 74.2 ± 1.5 75.2 ± 0.5 0.002 *

PTV_7500 D10%[Gy] 77.4 ± 0.8 77.5 ± 0.4 0.22 77.1 ± 1.5 77.5 ± 0.4 0.164

PTV_7500 D0.03cc[Gy] 78.4 ± 1.0 79.5 ± 0.8 <0.001 * 78.4 ± 1.8 79.3 ± 0.6 0.015*

Spinal Cord D0.03cc[Gy] 0.1 ± 0.1 0.0 ± 0.0 0.005 * 0.1 ± 0.3 0.0 ± 0.0 0.364

BrainStem_Core D0.03cc[Gy] 44.0 ± 14.7 33.6 ± 15.1 <0.001 * 38.3 ± 17.0 28.6 ± 14.2 <0.001 *

BrainStem_Surf D0.03cc[Gy] 43.0 ± 16.3 30.2 ± 16.4 <0.001 * 38.8 ± 19.3 28.5 ± 14.3 <0.001 *

OpticChiasm_PRV D0.03cc[Gy] 31.7 ± 22.2 21.1 ± 20.6 <0.001 * 34.8± 20.6 22.0 ± 18.4 <0.001 *

OpticNerve_PRV D0.03cc[Gy] 24.3 ± 25.6 20.0 ± 22.7 <0.001 * 22.0 ± 23.2 16.5 ± 19.7 0.002 *

Retina D0.03cc[Gy] 7.4 ± 13.6 3.2 ± 8 <0.001 * 7.5 ± 12.8 3.3 ± 7.0 0.014 *

Brain D5%[Gy] 71.4 ± 5.0 72.6 ± 4.6 0.013 * 73.2 ± 5.6 72.3 ± 5.3 0.059

Lens D0.03cc[Gy] 1.2 ± 2.8 0.4 ± 1.5 0.027 * 1.7 ± 0.4 0.7 ± 0.3 0.689

HIPTV_7500 1.05 ± 0.01 1.06 ± 0.01 <0.001 * 1.06 ± 0.01 1.04 ± 0.02 <0.008 *

CIPTV_7500 0.80 ± 0.16 0.89 ± 0.07 0.002 * 0.68 ± 0.31 0.89 ± 0.08 0.003 *

The paired t-test was employed; asterisks (*) indicate a statistically significant difference between the submitted
and KBP plan.
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Figure 2. Dose distribution of an example proton therapy case. Panels (A–C) illustrate the dose
distribution of the clinical plan, while panels (D–F) show the dose distribution of the KBP plan. The
KBP plan demonstrates enhanced target coverage and reduced dose delivered to adjacent OARs,
including the brainstem, optic chiasm_PRV, and left optic nerve_PRV.
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3.3. NRG-HN001 Proton Plan Quality Review

In Table 5, the results from the IROC QA review of 20 proton therapy plans submitted
to the NRG-HN001 are compared with KBP IMPT plans. The KBP IMPT plans demonstrated
a notable improvement in compliance with the protocol criteria, with a reduction in the
number of non-compliant cases by 54.8% and 75%, respectively.

Table 5. Comparison of IROC QA scores between the submitted NRG-HN001 proton plans and the
KBP plans.

Structures Dosimetric Parameter
Proton Submitted Proton KBP

Score 1 Score 2 Score 3 Score 1 Score 2 Score 3

PTV_High V100%[%] 3 4 13 13 4 3

PTV_High D99%[%] 6 3 11 12 2 6

PTV_High D0.03cc[%] 20 0 0 18 2 0

PTV_Intermediate1 V63Gy[%]/V62.7Gy[%] 2 0 7 8 1 0

PTV_Intermediate2 V59Gy[%]/V59.4Gy[%] 1 3 5 8 1 0

PTV_Low V56Gy[%] 1 2 8 9 0 2

SpinalCord D0.03cc[Gy] 18 2 0 20 0 0

BrainStem D0.03cc[Gy] 13 7 0 20 0 0

OpticChiasm D0.03cc[Gy] 17 1 0 20 0 0

OpticNerve_L D0.03cc[Gy] 17 1 0 20 0 0

OpticNerve_R D0.03cc[Gy] 17 1 0 20 0 0

TMjoint_L D0.03cc[Gy] 15 0 0 15 0 0

TMjoint_R D0.03cc[Gy] 15 0 0 15 0 0

Mandible D0.03cc[Gy] 19 1 0 19 1 0

BrachialPlexus_L D0.03cc[Gy] 18 2 0 20 0 0

BrachialPlexus_R D0.03cc[Gy] 20 0 0 19 1 0

TemporalLobe_L D0.03cc[Gy] 19 1 0 19 1 0

TemporalLobe_R D0.03cc[Gy] 20 0 0 20 0 0

Parotid_L Mean[Gy] 17 2 1 20 0 0

Parotid_R Mean[Gy] 16 1 3 18 1 1

Score 1: per-protocol; Score 2: variation acceptable; Score 3: deviation unacceptable.

Table 6 presents an analysis of the average differences in critical dosimetric parameters
between the submitted proton plans and the KBP IMPT plans. The analysis revealed that the
KBP IMPT plans achieved a significant reduction in the maximum doses delivered to vari-
ous critical structures. Specifically, reductions were observed in the brainstem (4.6 ± 6.8 Gy,
p = 0.008), optic chiasm (8.9 ± 12 Gy, p = 0.040), left optic nerve (9.8 ± 10 Gy, p = 0.034), right
optic nerve (13.1 ± 10 Gy, p = 0.002), left temporomandibular joint (4.6 ± 7.2 Gy, p = 0.195),
right temporomandibular joint (5.6 ± 6.6 Gy, p = 0.146), left parotid gland (2.9 ± 5 Gy,
p = 0.040), and right parotid gland (2.5 ± 4.7 Gy, p = 0.067).

Figure 3 provides a visual comparison of dose distribution in a typical case from
the proton plan cohort. The KBP IMPT plans demonstrate superior target coverage and
OAR sparing, although it is noteworthy that the KBP plan resulted in a higher maximum
dose to the PTV and an increased volume receiving the prescription dose compared to the
submitted clinical plan.
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Table 6. Comparison of dosimetric parameters in submitted and KBP proton plans from HN001
clinical trial.

Structures Dosimetric Parameter Proton Submitted Proton KBP p Value

PTV_High V100%[%] 42.1% ± 41.8% 84.1% ± 30.4% <0.001 *

PTV_High D99%[%] 89.7% ± 5.4% 93.3% ± 6.7% 0.037 *

PTV_High D0.03cc[%] 102.2% ± 4.0% 111.0% ± 4.9% <0.001 *

PTV_Intermediate1 V63Gy[%]/V62.7Gy[%] 53.3% ± 29.7% 97.1% ± 2.0% <0.001 *

PTV_Intermediate2 V59Gy[%]/V59.4Gy[%] 77.3% ± 21.2% 97.1% ± 2.5% <0.001 *

PTV_Low V56Gy[%] 63.8% ± 24.7% 91.4% ± 15.0% 0.003 *

SpinalCord D0.03cc[Gy] 37 ± 10.5 37.1 ± 2.3 0.486

BrainStem D0.03cc[Gy] 51.3 ± 7.4 46.7 ± 2.9 0.008 *

OpticChiasm D0.03cc[Gy] 34.3 ± 14.7 25.4 ± 15.7 0.040 *

OpticNerve_L D0.03cc[Gy] 41.7 ± 14.3 31.9 ± 17.6 0.034 *

OpticNerve_R D0.03cc[Gy] 42.7 ± 11.3 29.6 ± 15.2 0.002 *

TMjoint_L D0.03cc[Gy] 52.5 ± 11.1 47.8 ± 16.4 0.195

TMjoint_R D0.03cc[Gy] 50 ± 11.4 44.3 ± 16 0.146

Mandible D0.03cc[Gy] 63.6 ± 6.7 64.3 ± 4.7 0.361

BrachialPlexus_L D0.03cc[Gy] 60.9 ± 4.3 61.3 ± 2.3 0.345

BrachialPlexus_R D0.03cc[Gy] 60.7 ± 3.6 61.6 ± 2.8 0.208

TemporalLobe_L D0.03cc[Gy] 61.6 ± 6.8 60.7 ± 7.9 0.438

TemporalLobe_R D0.03cc[Gy] 62.6 ± 6.2 62.3 ± 7.4 0.342

Parotid_L Mean[Gy] 25.5 ± 6.3 22.6 ± 5.4 0.040 *

Parotid_R Mean[Gy] 24.5 ± 5.3 22.1 ± 2.8 0.067

HIPTV_high 1 ± 0 1.1 ± 0 <0.001 *

CI PTV_High 0.3 ± 0.3 0.7 ± 0.3 <0.001 *

The paired t-test was employed; asterisks (*) indicate a statistically significant difference between the submitted
and KBP plan.

Cancers 2024, 16, 2007 10 of 14 
 

 

 
Figure 3. Dose distribution of an example case in the proton cohort of NRG-HN001. KBP IMPT plan 
(right) versus original submitted IMPT plan (left). KBP plan demonstrates enhanced target coverage 
and better sparing of the right temporal lobe. 

4. Discussion 
This investigation revealed more pronounced improvements in adherence to treat-

ment protocols using the KBP model across both photon and proton modalities. The pro-
ton cohort showed notably superior dosimetric enhancements, with dose reductions rang-
ing from 1.1 to 12.8 Gy, compared to the photon cohort, which observed improvements 
between 1.1 and 3.6 Gy. Although the examined photon plans displayed high quality—
reflecting a mature development and implementation of IMRT techniques—the findings 
suggest there are still considerable opportunities for improvement through KBP. This 
could potentially refine treatment outcomes and increase adherence to established dosi-
metric guidelines. 

The superior performance of KBP proton plans can be attributed to the use of specific 
advanced technologies, particularly the Varian Eclipse treatment planning system and the 
Varian ProBeam beam model. These results demonstrate that treatment outcomes can 
vary significantly depending on the technology and software used, as well as the level of 
expertise in treatment planning across different institutions. This study not only confirms 
the effectiveness of KBP in optimizing radiation therapy plans but also highlights the cru-
cial role of technological and professional expertise in achieving optimal therapeutic out-
comes. It emphasizes the need for continuous advancements in treatment planning tools 
and methodologies along with ongoing professional development and training for clini-
cians to fully harness the therapeutic potential of proton therapy. 

Additionally, this study highlights the value of KBP tools as a robust benchmark for 
quality assurance in radiation therapy plans submitted for clinical trials. The future integra-
tion of KBP into the quality assurance processes of clinical trials could be pivotal, enhancing 
workflow efficiency and enabling a more thorough evaluation of treatment plans. 

In this study, the evaluated proton plans submitted to NRG-BN001 incorporated both 
IMPT and PS plans. Between 2015 and 2016, a predominant majority (81%) of cases were 
treated with PS proton therapy, whereas this ratio decreased to 16% for patients enrolled 
between 2017 and 2019. In addition, the submitted IMPT plans had considerably superior 
dose conformity to the target than the submitted PS plans (CI PTV_7500: 0.80 ± 0.16 vs. 

Figure 3. Dose distribution of an example case in the proton cohort of NRG-HN001. KBP IMPT plan
(right) versus original submitted IMPT plan (left). KBP plan demonstrates enhanced target coverage
and better sparing of the right temporal lobe.



Cancers 2024, 16, 2007 10 of 14

4. Discussion

This investigation revealed more pronounced improvements in adherence to treatment
protocols using the KBP model across both photon and proton modalities. The proton
cohort showed notably superior dosimetric enhancements, with dose reductions ranging
from 1.1 to 12.8 Gy, compared to the photon cohort, which observed improvements between
1.1 and 3.6 Gy. Although the examined photon plans displayed high quality—reflecting a
mature development and implementation of IMRT techniques—the findings suggest there
are still considerable opportunities for improvement through KBP. This could potentially
refine treatment outcomes and increase adherence to established dosimetric guidelines.

The superior performance of KBP proton plans can be attributed to the use of specific
advanced technologies, particularly the Varian Eclipse treatment planning system and
the Varian ProBeam beam model. These results demonstrate that treatment outcomes can
vary significantly depending on the technology and software used, as well as the level of
expertise in treatment planning across different institutions. This study not only confirms
the effectiveness of KBP in optimizing radiation therapy plans but also highlights the
crucial role of technological and professional expertise in achieving optimal therapeutic
outcomes. It emphasizes the need for continuous advancements in treatment planning
tools and methodologies along with ongoing professional development and training for
clinicians to fully harness the therapeutic potential of proton therapy.

Additionally, this study highlights the value of KBP tools as a robust benchmark for
quality assurance in radiation therapy plans submitted for clinical trials. The future integra-
tion of KBP into the quality assurance processes of clinical trials could be pivotal, enhancing
workflow efficiency and enabling a more thorough evaluation of treatment plans.

In this study, the evaluated proton plans submitted to NRG-BN001 incorporated both
IMPT and PS plans. Between 2015 and 2016, a predominant majority (81%) of cases were
treated with PS proton therapy, whereas this ratio decreased to 16% for patients enrolled
between 2017 and 2019. In addition, the submitted IMPT plans had considerably superior
dose conformity to the target than the submitted PS plans (CI PTV_7500: 0.80 ± 0.16
vs. 0.68 ± 0.31). Despite the motion insensitivity of the PS system and less complex
beam delivery [28], components such as scatter foils, range modulator wheel, and patient-
specific compensator restrict beam conformity and limit maximum treatment depth [29]. In
contrast, the pencil beam scanning (PBS) system uses magnets to manipulate the proton
beam, enabling superior conformity, deeper treatment, and less neutron generation, as
scattering foils and compensators are not required. The utilization of the PBS system,
however, presents challenges such as increased complexity, longer delivery time, and low
motion tolerance [30–32]. Consequently, while the passive scattering system was initially
predominant, the pencil beam scanning approach is becoming progressively favored [32].

Recent studies have demonstrated the viability of using a KBP model for treatment
plan QA and re-optimization [33–35]. The utilization of KBP has been shown to elevate
planning efficiency and quality with reduced variability, thereby serving as a robust bench-
mark for clinical plans. The integration of these models within clinical trial QA processes
not only enhances the overall quality but also has the potential to abbreviate the learning
curve for clinical practitioners [14,25,36,37]. In our analysis, the application of these models
has been particularly instrumental in evaluating the quality of treatment plans submitted
to clinical trials, underscoring their utility as a critical assessment tool.

This study acknowledges several limitations. The constrained availability of proton
plans necessitated the reliance on IMPT plans reconstituted from photon cases as surrogates
for training the KBP proton models. This approach could introduce a potential bias into
the training library, possibly affecting the model’s quality. Moreover, the KBP models were
constructed using IMPT plans derived from golden beam models provided by the system
manufacturer, which might not align with the capabilities of equipment at participating in-
stitutions. Therefore, the plan quality depicted in this analysis represents what is attainable
under ideal conditions with specific beam models and techniques, rather than a definitive
representation of the variability in quality that might be encountered in real-world prac-
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tice. Additionally, our premise is that improved plan quality could positively influence
patient outcomes by reducing side effects and improving overall quality of life. However,
it is important to note that as the clinical trials assessed in this study are still ongoing,
we do not currently have access to the outcome data necessary to directly evaluate these
potential benefits.

5. Conclusions

This investigation evaluated the quality of RT plans submitted to the multi-institutional
clinical trials NRG-BN001 and NRG-HN001. It demonstrates the efficacy of KBP models in
generating protocol-compliant plans and for RT plan QA. The findings indicate that the
photon plans submitted to the NRG-BN001 clinical trial generally exhibit commendable
quality. However, there is a marked variability in the quality of proton plans submitted
for both NRG-BN001 and NRG-HN001, highlighting the emerging nature of this therapy.
This study introduced the KBP-based models, which serve as a benchmark for the quality
of plans that can be achieved in the management of tumors of the brain and head/neck
region with radiation therapy. The KBP models built in this study will be published and
made accessible to both the research and clinical communities for the purpose of RT plan
QA and optimization.
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