Arthroscopic Treatment of Cystic Talus Osteochondral Lesions: Long-Term Results

Cary Chapman
Baptist Health Orthopedic Institute, carych@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications

Citation
https://scholarlycommons.baptisthealth.net/se-all-publications/4422

This Conference Poster – Open Access is brought to you for free and open access by Scholarly Commons @ Baptist Health South Florida. It has been accepted for inclusion in All Publications by an authorized administrator of Scholarly Commons @ Baptist Health South Florida. For more information, please contact Carrief@baptisthealth.net.
Arthroscopic Treatment of Cystic Talus Osteochondral Lesions: Long-Term Results

Kshitij Manchanda, M.D.1, Joseph E. Manzi, B.S.2, Cary B. Chapman, M.D.1
1. Miami Orthopedics and Sports Medicine Institute, Coral Gables, FL, USA
2. Weill Cornell Medical College, New York, NY, USA

BACKGROUND/AIMS
- Osteochondral lesions of the talus (OCLT) are commonly seen with traumatic ankle injuries
- OCLTs can be difficult to treat
- Other etiologies: repetitive microtrauma, degenerative joint arthropathy, metabolic derangements
- Can significantly impact patients’ occupations and activities of daily living
- Nonoperative treatment include bracing, physical therapy, injections
- Conventional operative strategies include:
 - Arthroscopic debridement and bone marrow stimulation techniques
 - Including microfracture, curettage, abrasion chondroplasty and antegrade/retrograde drilling
 - Fibrocartilage
 - Effective for small lesions
- Osteochondral allografts or autologous chondrocyte implantation.
- Larger lesions with accompanying subchondral bone
- More invasive treatment which may require harvesting from the knee or malleolar osteotomies, which have associated donor site morbidities and complications of osteotomy healing.
- We describe an alternative method, an all-arthroscopic technique to treat these large OCLTs, and sought to determine long-term quality of life metrics for a cohort of patients.

TECHNIQUE
- Supine position, ankle within noninvasive distraction (Figure 1)
- Begin with diagnostic ankle arthroscopy under standard settings using a 2.7 mm scope (30-35 mm Hg water pressure)
- Location and size of defect is noted using measuring probe (Figure 2)
- Begin with diagnostic ankle arthroscopy under standard settings using
- Bone graft and Allograft cartilage are loaded retrograde into arthroscopic cannulas to allow for easier delivery
- This may be an effective long-term treatment for patients with difficult to treat OCLTs.

METHODS
- Single surgeon
- 6 patients with difficult to treat OCLTs from 2010-2012
- Underwent arthroscopic-assisted implantation of particulated juvenile allograft cartilage along with autogenous bone grafting from the calcaneus
- Inclusion criteria (at least 2 of the following)
 - Shoulder lesions
 - Lesion size > 125 mm²
 - Failed previous microfracture treatment
 - Age > 40 with BMI > 25 kg/m²
- All 6 patients fully evaluated with physical examination, patient interviews, and outcome score measures
- Follow-up completed at 2 years, 4 years, and between 6-9 years at most recent follow-up
- Functional outcome score measures analyzed:
 - Visual Analog Score (VAS)
 - Foot and Ankle Ability Measures (FAAM) Scores and Activities of Daily Living (ADL)
 - AOFAS Score
- Short Form-36 (SF-36) Physical and Mental Component Scores (PCS/MCS)
- Wilcoxon Signed Ranked Test used to compare values

RESULTS
- Average age: 43.8 ± 14.0 years
- Average BMI: 28.4 ± 6.7 kg/m²
- Average lesion sizes of 188.5 ± 50.9 mm² (range: 125-260 mm²)
- Average most recent follow-up of 8.4 ± 1.2 years (range: 6.0-9.3 years).
- Post-operatively:
 - Average VAS pain scores decreased by 4.2 points, 95% CI [1.6-6.8].
 - Average FAAM ADL scores improved from 41.8 to 72.5, 95% CI [11.3-50.1].
 - Average SF-36 Physical Component Scores also showed significant improvement by 37.8 points, 95% CI [20.8-54.8].
 - Average FAAM Sports (p = 0.055) and AOFAS (p = 0.066) scores clinically improved from 13.3 to 39.2 and 57.7 to 96.3, respectively, and approached statistical significance.
- There were no intraoperative or perioperative complications with calcaneal bone grafting.

CONCLUSION
- Small cohort of patients followed over the course of ~8 years
- Patients significantly improved compared to pre-operative measures, with no complications observed after implantation of particulated juvenile allograft cartilage and autogenous calcaneal bone.
- This may be an effective long-term treatment for patients with difficult to treat OCLTs.

REFERENCES
