HGG-18. CLINICAL EFFICACY OF ONC201 IN THALAMIC H3 K27M-MUTANT GLIOMA

Minesh Mehta
Miami Cancer Institute, mineshm@baptisthealth.net

Yazmin Odia
Miami Cancer Institute, yazmino@baptisthealth.net

Matthew Hall
Miami Cancer Institute, matthewha@baptisthealth.net

Doured Daghistani
Miami Cancer Institute, douredd@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications

Citation
Neuro-Oncology (2020) 22 (3 Suppl):iii347

This Article -- Open Access is brought to you for free and open access by Scholarly Commons @ Baptist Health South Florida. It has been accepted for inclusion in All Publications by an authorized administrator of Scholarly Commons @ Baptist Health South Florida. For more information, please contact Carrief@baptisthealth.net.
Hala Tahaz, Shahenda El-nagar, and Mohamed El-belaghy; 1 National Cancer Institute, Cairo University, Cairo, Egypt, 2 Children Cancer Hospital-Egypt (CCHE-57357), Cairo, Egypt, 3 Faculty of Medicine, Assiut University, Assiut, Egypt, 4 University Hospital of Geneva, Geneva, Switzerland, 5 Kasr El-Ainy School of Medicine, Cairo University, Cairo, Egypt

BACKGROUND: Data about high-grade glioma (HGG) in very young children (<3 years old at diagnosis) is scarce. METHODS: 180 pediatric HGG patients were treated at the Children Cancer Hospital - Egypt (CCH-E-57357) between July 2007 and June 2018, with 17 patients aged <3 years at diagnosis. Medical records were retrospectively reviewed for clinical, radiological and histopathological data, treatment received and survival outcome. RESULTS: Median age was 29.2 months (range: 2.4 - 38.5 months; males = 9). Most frequent pathological diagnosis was Glioblastoma, WHO grade-IV (n = 11, 64.7%) and one patient had H3-mutant diffuse midline glioma. All patients underwent surgery (gross-total resection, n = 6, 35.3%; subtotal-resection, n = 5, 29.4%; biopsy, n = 6, 35.3%). One patient (age = 7 months) progressed and died before starting adjuvant therapy. All patients ≤3 year of age (n = 5) received adjuvant chemotherapy (CT) only, older children (n = 11) received adjuvant radiotherapy (RT) (total dose range: 54 – 60 Gy) and CT (CCG-9495 protocol). The 1-year overall survival (OS) rate was 47.1%, and event-free survival (EFS) rate was 35.3%. EFS differed between those who received RT and those who did not (1-year EFS 34.5% and 0% respectively). Median age at diagnosis for primary and recurrent patients was 1.9 years (range: 0.3 – 4.5 years). P = 0.001). CONCLUSIONS: HGG in very young children presents differently in non-midline locations and usually lack the H3-mutation. RT seems crucial in the management of pHGG regardless of age subgroup.

HGG-18. CLINICAL EFFICACY OF ONC201 IN THALAMIC H3 K27M-MUTANT GLIOMA

Abed Rahman Kawakhbi1, Robinhton S. Tarapore, Sharon Gardner, Andrew Cheryl Brown, Zachary Miklja, Tracy T. Batchelor, Nicholas A. Butowski, Ashley Sumrall, Nicole Shonka, Rebecca Harrison, John DeGroot, Minesh Mehta, Yasmine Oda, Matthew D. Hall, Doudhe Daghastani, Timothy F. Cloughesy, Benjamin M. Ellingson, Yoshie Umemura, Jonathan Schwartz, Vivekanand Yadav, Rodrigo Cartaxo, Ruby Siada, Zachary Miklja, Amy Bruzek, Evan Cantor, Kyle Wierzbicki, Alyssa Paul, Ian Wolfe, Marcia Leazoard, Hugh Garton, Rajen Mody, Timothy F. Cloughesy, Zachary Miklja, Alyssa Paul, Ian Wolfe, Marcia Leazoard, Hugh Garton, Rajen Mody, and Carl Koschmann1; 1 University of Michigan, Ann Arbor, MI, USA, 2 Oncoceutics Inc., Philadelphia, PA, USA, 3 NYU Langone Health, New York, NY, USA, 4 Dana-Farber Cancer Institute, Boston, MA, USA, 5 Massachusetts General Hospital, Boston, MA, USA, 6 Brigham and Women’s Hospital, Boston, MA, USA, 7 University of California San Francisco, San Francisco, CA, USA, 8 Levine Cancer Institute, Charlotte, NC, USA, 9 University of Nebraska Medical Center, Omaha, NE, USA, 10 University of Texas MD Anderson Cancer Center, Houston, TX, USA, 11 Miami Cancer Institute, Miami, FL, USA, 12 University of California Los Angeles, Los Angeles, CA, USA, 13 Mayo Clinic, Rochester, MN, USA

ONC201, a bitopic DRD2 antagonist and allosteric ClpP agonist, has shown encouraging efficacy in H3 K27M-mutant glioma. Given that the thalamus has the highest extra-strial expression of DRD2, we performed an integrated preclinical and clinical analysis of ONC201 in thalamic H3 K27M-mutant glioma. ONC201 was effective in mouse intra-uterine electroporation (3UE)-generated H3 K27M-mutant gliomas, with an in vitro IC50 of 500 nM and 50% prolongation of median survival in vivo (p=0.02, n=14). We analyzed thalamic H3 K27M-mutant glioma patients treated with ONC201 on active clinical trials as of 5/22/19 enrollment (n=19 recurrent and n=14 non-recurrent). Median duration of response for recurrent patients was 14.0 months (2.0-33.1). Furthermore, H3 K27M cell-free tumor DNA in plasma and CSF correlated with MRI response. In summary, single agent ONC201 administered at recurrence, or adjuvantly following radiation, demonstrated clinical efficacy in thalamic H3 K27M-mutant glioma patients who currently have no effective treatments following radiation. Investigations are ongoing to assess whether micro-environmental DRD2 expression explains the earlier exceptional responses in thalamic H3 K27M-mutant glioma.

HGG-19. IDENTIFICATION OF NOVEL SUBGROUP-SPECIFIC MRNA EXOSOMAL BIOMARKERS IN PEDIATRIC HIGH-GRAD GLOMIA

Lucia Lisa Petrilli1, Alessandro Paolini1, Angela Galardi1, Giulia Pericoli1, Marta Colletti, Roberta Ferretti, Virginia Di Paolo1, Luisa Pascucci1, Hector Pedano1, Chris Jones1, Antonella Cacchine1, Luca De Palma1, Marta Alonso1, Andrew Moore1, Angel Montero Carcabos, Andrea Usuelli1, Angela Masson1, Franco Locatelli2, Virginia Di Paolo1, Angela Di Giannattale1, and Maria Vinci1; 1 Department of Oncology-Hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy, 2 Multifactorial and Complex Phenotypes Research Area, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy, 3 Department of Veterinary Medicine, University of Padova, Padua, Italy 4 Department of Neuroscience, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy, 5 Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain, 6 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia, 7 Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Barcelona, Spain, 8 Department of Neuroscience and Neuro-rehabilitation, Neurosurgery Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy, 9 Neuro-oncology Unit, Department of Oncology-Hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy.

Pediatric high-grade gliomas (pHGG) are heterogeneous brain tumors for which new diagnostic and useful biomarkers are needed. To this end, in this study, we aimed to identify new pHGG subgroup specific biomarkers by exploiting exosomes, known vehicles of oncogenic signals. We used plasma from 23 patients (including 6 controls) and conditioned medium from 12 patient-derived cell-lines, representing all locational and molecular subgroups. Upon exosome isolation, total RNA was extracted and miRNAs were assayed using a PCR Panel. Analysis of plasma miRNomes showed that tumor exosomal samples were largely clustered together, independently from tumor location and/or molecular subgroup. Further analysis of data reveals 27 miRNAs that were consistently upregulated and 25 downregulated miRNAs compared to controls. Interestingly, 27 miRNAs were expressed only in tumors. Furthermore, the unsupervised clustering showed a clear separation based on locational characteristics (vs H3.3K27M, vs H3.13K27M, vs H3.3K27M) subgroups comparisons, with the identification of distinct miRNomes underlying the key role of location and mutations in defining the pHGG exosomal miRNA profile. This was further confirmed analyzing the miRNome from cell-line derived exosomes. Moreover, we identified 20 signifi-
cantly differentially regulated miRNAs in diagnose vs relapse and biopsy vs autopsy cell-lines. Most importantly, when comparing hemispheric vs pontine and H3.3G4R vs H3.3K27M, we identified respectively four and three miRNAs equally dysregulated and in common between plasma and cell-lines. Those were strongly associated mainly to transcriptional regulation and targeting TCC2, linked to cancer invasion and metastasis. Based on this, we suggest exosomal miRNAs as a powerful new pHGG diagnostic/prognostic tool.
Neuro-oncology

PUBLICATION TYPE: e-Journal

ISSN: 1523-5866
Date: 1999 - Present
Publisher: DUKE UNIVERSITY PRESS
Language: English
Country: United States of America
URL: http://neuro-oncology.mc.duke.edu
Authors: Society for Neuro-Oncology.
Licensee: Baptist Health South Florida
Date/Time: 11 Feb 2021 02:53

Digital Sharing

This permission type is covered.

Special terms:

Please note. Any permission obtained through this service only relates to material owned or controlled by Oxford University Press. If the material you wish to use is acknowledged to any other source, you may also need to clear additional permission with the rights holder.

Your organization has obtained rights for you to copy and share this title in electronic form.

Examples include

- Emailing a copy to my co-workers.
- Storing a copy on an internal shared network.
- Storing a copy on your local hard drive.
- Displaying in a presentation to co-workers.
- Distributing in a PowerPoint presentation to co-workers.
- Submitting an electronic copy to regulatory authorities.

The license cannot be used to create a library or collection intended to substantially replace the need to take a subscription or purchase a particular Work.