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OBJECTIVES: Since the beginning of the coronavirus disease 2019 pan-
demic, hundreds of thousands of patients have been treated in ICUs across 
the globe. The severe acute respiratory syndrome–associated coronavirus 
2 virus enters cells via the angiotensin-converting enzyme 2 receptor and 
activates several distinct inflammatory pathways, resulting in hematologic 
abnormalities and dysfunction in respiratory, cardiac, gastrointestinal renal, 
endocrine, dermatologic, and neurologic systems. This review summarizes 
the current state of research in coronavirus disease 2019 pathophysi-
ology within the context of potential organ-based disease mechanisms and 
opportunities for translational research.

DATA SOURCES: Investigators from the Research Section of the Society 
of Critical Care Medicine were selected based on expertise in specific 
organ systems and research focus. Data were obtained from searches 
conducted in Medline via the PubMed portal, Directory of Open Access 
Journals, Excerpta Medica database, Latin American and Caribbean 
Health Sciences Literature, and Web of Science from an initial search from 
December 2019 to October 15, 2020, with a revised search to February 3, 
2021. The medRxiv, Research Square, and clinical trial registries preprint 
servers also were searched to limit publication bias.

STUDY SELECTION: Content experts selected studies that included 
mechanism-based relevance to the severe acute respiratory syndrome–
associated coronavirus 2 virus or coronavirus disease 2019 disease.

DATA EXTRACTION: Not applicable.

DATA SYNTHESIS: Not applicable.

CONCLUSIONS: Efforts to improve the care of critically ill coronavirus 
disease 2019 patients should be centered on understanding how severe 
acute respiratory syndrome–associated coronavirus 2 infection affects 
organ function. This review articulates specific targets for further research.

KEY WORDS: angiotensin-converting enzyme 2 receptor; coronavirus 
disease 2019; critical illness; pandemic; severe acute respiratory 
syndrome–associated coronavirus 2

The coronavirus disease 2019 (COVID-19) pandemic caused by the 
beta-coronavirus severe acute respiratory syndrome–associated co-
ronavirus (SARS-CoV) 2 virus has resulted in more than 106 mil-

lion cases and more than 2.32 million deaths (as of February 7, 2021) since 
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emerging in December 2019 (1–3). Approximately, 
20% of patients require hospitalization, and 25% of 
those require ICU admission due to refractory hy-
poxemia, shock, or multiple organ failure (MOF) 
(4–7). Numerous descriptive studies of COVID-19 
pathophysiology, mechanism, signaling, and po-
tential immunologic consequences have been pub-
lished, but many reports lack integration and context. 
COVID-19 victims do not succumb from the SARS-
CoV-2 infection per se; rather, mortality occurs due 
to pneumonia, renal failure, thrombosis, and MOF 
that reflect the innate immune signaling response 
to the infection. The international community has 
been much less focused on the ramifications of innate 
immune signaling activation in COVID-19 (8).

In addition, analysis of COVID-19 outcomes further 
exposes existing health disparities: Black and Hispanic 
Americans are disproportionately impacted in terms 
of morbidity and mortality. Additionally, males have 
demonstrated lower survival rates (9–13). Although 
these differences clearly indicate the need for evalu-
ation of social determinants of health in COVID-19, 
they may also reveal previously unrecognized mech-
anistic and signaling pathways that could be targeted 
for potential therapeutics. This review summarizes the 
current mechanisms and reported pathophysiology 
of COVID-19 disease to characterize and understand 
the illness and treatment. Since many patients present 
with single organ disruption and/or current level of 
evidence has been explored in specific organs, we pre-
sent the known data in this fashion. We also explore 
why organ disruption in the setting of COVID-19 
(e.g., pneumonia, acute respiratory distress syndrome 
[ARDS], renal failure) and the response to COVID-19 
therapy appear to frequently differ from classical forms 
of these pathologies.

OVERVIEW OF DISEASE 
TRANSMISSION AND CLINICAL 
FEATURES

SARS-CoV-2 is predominantly transmitted via respi-
ratory droplets released by coughing or sneezing (14). 
Similar to its predecessor SARS-CoV-1 (2003 SARS 
outbreak), SARS-CoV-2 binds to the angiotensin-con-
verting enzyme (ACE) 2 receptor via the virus Spike 
protein (15). Host organs expressing the ACE2 re-
ceptor that are targets for the virus Spike protein are 
presented in Figure 1. After binding, the furin domain 

of the Spike protein is cleaved by host proteases (e.g., 
serine protease transmembrane protease, serine 
[TMPRSS]2), which enables viral and cellular mem-
brane fusion and subsequent internalization and re-
lease of the viral RNA (15). The ACE2 protein is widely 
expressed on respiratory epithelium, which is the pre-
sumed entry point, although ACE2 protein expression 
has been detected in many different organs (16).

Infected individuals may remain asymptomatic or 
may develop a wide range of symptoms including fever, 
malaise, anosmia, hypogeusia, sore throat, headache, 
cough, shortness of breath, chest pain, nausea, abdom-
inal pain, diarrhea, or cognitive changes. COVID-19 
patients often present with lymphopenia, elevated 
nonspecific inflammatory markers (C-reactive pro-
tein, lactic acid dehydrogenase [LDH], d-dimer, fer-
ritin, aspartate aminotransferase [AST]), and patchy/
bilateral infiltrates on chest radiography. Patients who 
proceed to critical illness typically develop shortness of 
breath and hypoxemia within 5–8 days after symptom 
onset and are more likely to be older, blood type A, 
and have multiple comorbidities (7, 17–19). Critically 
ill COVID-19 patients often require prolonged respira-
tory support and have high risk for MOF, thrombotic 
coagulopathies, acute kidney injury (AKI), sudden 
myocardial dysfunction, and prolonged hospitaliza-
tion (20, 21).

REPORTED HOST IMMUNE 
RESPONSES IN COVID-19

There are likely several SARS-CoV-2–induced inflam-
matory responses depending on host-pathogen inter-
action and disease evolution (summarized in Fig. 2). 
Similar to other viral infections, viral replication and 
cellular damage directly activate the host immune re-
sponse, which contribute to the initial inflammatory 
response (22). Viral replication induces host cell death 
and the release of multiple danger-associated molec-
ular patterns (DAMPs), which increase localized and 
systemic inflammation via proinflammatory cytokine 
and chemokine secretion (23). SARS-CoV-1 causes 
pyroptosis and activates the nucleotide-binding oligo-
merization domain, leucine rich repeat and pyrin 
domain containing-3 inflammasome, further activat-
ing a proinflammatory cytokine cascade (24). Thus, 
inflammasome activation may be one mechanism by 
which SARS-CoV-2 recruits host immune cells to the 
infection site, causing capillary leak, inflammatory 
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infiltrates, and pulmonary edema. Recent studies also 
implicated neutrophil extracellular traps (NETs) in di-
sease progression, although their impact as a driver of 
downstream inflammation remains unclear (25–27).

Consensus is lacking on how to characterize the se-
verity and nature of the inflammatory response. Several 
early case studies in COVID-19 reported markedly el-
evated levels of interleukin (IL)–1β, IL-6, IL-10, tumor 
necrosis factor (TNF)–α, and other mediators, leading 
many to characterize it as a “cytokine storm.” However, 
not every perturbation in a disease setting is maladap-
tive, and response severity measured at indiscriminate 
time points does not necessarily correlate with path-
ogenicity. Distinguishing between appropriate and 
dysregulated inflammatory responses in critically ill 
patients remains challenging. Most cytokines induce 
pleiotropic downstream effects with interdependent 
biological activities, and interactions among these 
mediators are neither linear nor uniform. The term “cy-
tokine storm” implies that the elevated cytokine levels 
are necessarily injurious to host cells, and widespread 
acceptance of this term fueled the repurposing of many 
immunotherapy drugs to suppress various inflamma-
tory pathways. One approach to understanding these 
responses has been to use the first 72 hours of tem-
perature data from hospitalized COVID-19 patients 
as a surrogate for the inflammatory response, thereby 

allowing subphenotyping of patients (28, 29). Perhaps 
not surprisingly, a subset of COVID-19 patients 
manifests a dysfunctional “hyperinflammatory” re-
sponse with persistent fevers and elevated inflamma-
tory markers, whereas a separate subset manifests a 
dysfunctional “hypoinflammatory” response, with an 
absence of fevers and worse MOF (29). Thus, any dis-
cussion of the immune response in COVID-19 must 
consider that although some patients mount an appro-
priate response and resolve the infection, others de-
velop variably different dysfunctional responses which 
manifest as different COVID-19 subphenotypes.

Consistent with a hypoinflammatory subpheno-
type, a significant proportion of COVID-19 patients 
manifest a disease similar to immunoparalysis in 
sepsis, which involves decreased human leukocyte 
antigen (HLA)-DR expression and profound, persis-
tent lymphopenia, including reductions in both CD4 
and CD8 T cells. In addition, the remaining immune 
cells in many COVID-19 patients are functionally im-
paired: monocytes have been shown to release less 
TNF-α, whereas T cells release less IFN-γ and dem-
onstrate increased PD-1 expression, consistent with 
an exhausted phenotype (30–33). The observed down-
regulation of IL-2 and IL-7 in COVID-19 patients 
indicates an impairment in the development, differ-
entiation, and homeostatic expansion of T cells (34). 

Figure 1. Tissues expressing angiotensin-2 receptor (angiotensin-converting enzyme [ACE] 2) and related COVID-19 symptoms. 
ARDS = acute respiratory distress syndrome, GI = gastrointestinal.
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Such patients may benefit from immune stimulation, 
rather than immune suppression. Indeed, recent work 
suggests that treatment with the inhaled antiviral cy-
tokine interferon-α2b results in accelerated viral clear-
ance and reduced lung injury (35).

In contrast, the hyperinflammatory response sub-
phenotype involves elevated levels of IL-6, IL-10, IL-8, 
and chemokines (e.g., C-X-C motif ligand [CXCL]–8, 
CXCL1, CXCL10, and C-C motif chemokine ligand-5) 
(21, 34, 36–40). CXCL10 reflects recent IFN-γ activity 
within 14 days, suggesting that the elevated CXCL10 lev-
els at the time of ICU admission might be indicative of 
increased T helper 1, natural killer (NK), or natural killer 
T cell activity early in the illness, even though IFN-γ 

levels were not elevated among these patients (34). TNF-
α levels range from low to normal or increased, indicat-
ing that the hyperinflammatory immune response is 
distinct from the classical cytokine storm associated with 
diseases like macrophage-activation syndrome in which 
TNF-α is both a lead cytokine and a therapeutic target 
(34). IL-1β levels are variable, reported as increased or 
decreased, and there are currently trials using anakinra, 
which blocks IL-1β activity, for treatment of the hyperin-
flammatory phase of COVID-19 (34).

Despite these overall patterns, IL-6 levels are or-
ders of magnitude lower in patients with severe or 
critical COVID-19 disease (median 26–210 pg/mL) 
than in patients with non–COVID-19 ARDS (median 

Figure 2. Proposed host immune responses secondary to severe acute respiratory syndrome–associated coronavirus 2 (SARS-CoV-2) 
infection. Although several host immune responses are activated by SARS-CoV-2 infection, all mechanisms appear to activate janus 
kinase/signal transducer and activator of transcription (JAK/STAT), p38 mitogen-activated protein kinase (MAPK), and/or nuclear 
factor–κB (NF-κB) pathways. This leads to release of proinflammatory cytokines (tumor necrosis factor [TNF] α, interleukin [IL]–6, 
IL-1β) and chemokines (C-X-C motif ligand [CXCL] 1, CXCL10), and immune cell recruitment. Current evidence implicates three 
potential mechanisms. 1) Direct viral infection induces host cell death and the release of multiple damage/danger-associated molecular 
patterns (DAMPs), which increase proinflammatory cytokine and chemokine secretion. 2) Activation of NLRP3 inflammasome and 
pyroptosis triggers a cascade of proinflammatory cytokines such as IL-1β. 3) Viral infection dysregulates the renin-angiotensin system 
(RAS) by down-regulating the ACE2 receptor, which leads to decreased angiotensin (Ang) 1–7, increased AngII, and subsequent 
AngII-receptor type 1 (AT1R) activation. This ultimately activates JAK/STAT, p38 mitogen-activated protein kinase (MAPK), and 
NF-κB pathways and induces a proinflammatory state. CRP = C-reactive protein, NK = natural killer, NLRP3 = nucleotide-binding 
oligomerization domain, leucine rich repeat and pyrin domain containing-3.
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578–1,618 pg/mL) (21, 36–43). Elevated IL-6 levels are 
needed to activate and potentiate the adaptive immune 
response and promote T cell regulation. By contrast, ex-
cessive IL-6 levels can block lymphopoiesis and induce 
lymphocyte death (44). All distinct lymphocyte subsets 
(NK cells, B cells, and T cells) may be affected by this 
innate overactivation (34). The degree of IL-6 elevation 
has been correlated with adverse outcomes in COVID-
19 patients and has led to trials of anti–IL-6 therapy for 
COVID-19 patients, with variable success (45, 46).

Other contributors to the hyperinflammatory state 
that are observed in many patients include dysregulation 
of the renin-angiotensin system (RAS) and its interac-
tion with the host immune response. ACE2 regulates 
RAS homeostasis by cleaving angiotensin II (proinflam-
matory/profibrotic) into angiotensin 1–7, which leads to 
an anti-inflammatory/antifibrotic/antioxidant response 
(47–59). Angiotensin II is elevated in preclinical ARDS 
models and elicits proinflammatory effects by activating 
angiotensin II receptor type 1 (AT1R), nuclear factor–κB, 
janus kinase/signal transducer and activator of transcrip-
tion, and p38 mitogen-activated protein kinase pathways; 
activation of these signaling pathways has stimulated in-
terest in trials of kinase inhibitors for COVID-19. The 
cleaved peptide (angiotensin 1–7) reduces inflamma-
tion by binding the Mas receptor to antagonize AT1R 
(56). Previous studies report that SARS-CoV-1 infection 
down-regulates ACE2 in mice, which correlated with se-
vere acute lung pathologies mediated by increased an-
giotensin II and AT1R activation (57). Angiotensin II 
was elevated in a small cohort of COVID-19 patients 
and appeared to correlate with viral load and lung injury, 
thus supporting the hypothesized role of RAS-immune 
axis dysregulation (60).

The role of ACE2 in COVID-19 pathophysiology 
led to hypotheses regarding the therapeutic use of ACE 
inhibitors (ACEIs) and angiotensin receptor blockers 
(ARBs) in patients with COVID-19. One hypothesis 
suggests that ACEI-mediated ACE2 inhibition could 
reduce morbidity and mortality by down-regulating 
RAS (57). By contrast, ACEIs, and ARBs could hy-
pothetically increase ACE2 expression, leading to 
increased host susceptibility to viral invasion of target 
cells (52). Several small observational studies inves-
tigated the clinical outcomes of these hypotheses in 
patients with COVID-19, and current data suggest no 
benefit or harm from ACEIs and ARBs on risk of de-
veloping COVID-19 or clinical outcomes (61, 62).

The primary site of SARS-CoV-2 infection in the 
lungs is type 2 alveolar epithelial cells (AT2 cells). 
Other cell types also express the ACE2 receptor and 
may contribute to the multiple organ inflammatory 
response observed in patients with COVID-19 di-
sease. ACE2 expression is essentially ubiquitous and 
has been detected in the brain, heart, oral and nasal 
mucosa, nasopharynx, liver, kidney, lung, stomach, 
small intestine, colon, skin, lymph nodes, thymus, 
bone marrow, and spleen (16, 58). ACE2 expression 
has been reported on lymphocytes, and SARS-CoV-2 
viral particles can be detected in lymphocytes (63, 64). 
Therefore, direct lymphocyte infection and cell death 
may be responsible for lymphopenia in COVID-19 
patients and explain the mechanism by which cytokine 
release syndrome can develop in severe COVID-19  
infections (65).

SARS-CoV-1 and SARS-CoV-2 have been isolated 
from macrophages, and viral infection of these cells in 
vitro appears to be associated with increased cytokine 
release (66, 67). However, it remains difficult to dis-
tinguish these inflammatory mechanisms from direct 
cellular infection effects due to ubiquitous ACE2 ex-
pression on immune cells (i.e., macrophages and den-
dritic cells) and in multiple organs. Alternatively, MOF 
may be due to damage resulting from a combination 
of the systemic inflammatory response or ongoing 
immune suppression and persistent viral replication. 
Finally, the emerging postinfectious inflammatory 
syndrome in children (termed “multisystem inflam-
matory syndrome in children”) is likely mediated by 
inflammatory cytokines, although this remains an area 
of active exploration and will not be the subject of this 
review (68).

METHODS

We performed a narrative review of the literature 
retrieved from searches of Medline via the PubMed 
portal, Directory of Open Access Journals, Excerpta 
Medica database, Latin American and Caribbean 
Health Sciences Literature, and Web of Science orig-
inally from December 2019 to October 15, 2020, and 
revised twice to December 10, 2020, and February 3, 
2021. We included data prior to December 2019 when 
relevant for the reported or proposed mechanisms 
in each organ system. Searches were not limited by 
date, language, or publication status. Publication bias 
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was limited by searching clinical trial registries in-
cluding ClinicalTrials.gov, World Health Organization 
International Clinical Trials Registry Platform, and 
the Australian New Zealand Clinical Trials Registry. 
We also searched the medRxiv and Research Square 
preprint servers to limit publication bias. Grey litera-
ture was eligible for inclusion if the authors responded 
affirmatively to correspondence with the requested 
information.

We used the following National Library of Medicine 
Mesh search terms: SARS-CoV-2 [Mesh], COVID-19  
[Mesh], Middle East Respiratory Syndrome 
Coronavirus [Mesh], SARS virus [Mesh]; Respiratory 
Distress Syndrome [Mesh], and Pneumonia [Mesh]. 
Additional search terms included 2020 pandemic 
and individual organ system terms. Articles were not 
assessed using standardized and validated scales to 
assess risk-of-bias or evidence quality. The data were 
not pooled, so statistical analyses were not performed.

COVID-19 DISEASE MECHANISMS IN 
ORGAN FAILURE

Respiratory Manifestations and Failure

SARS-CoV-2 was first identified via a bronchoalveo-
lar lavage sample from a patient with severe ARDS in 
Wuhan, China, indicating that the predominant lo-
cation of viral replication and shedding is the respira-
tory tract (69). Patients with COVID-19 develop a wide 
spectrum of pulmonary diseases with varying severities, 
suggesting multiple mechanisms of disease propaga-
tion. Early evaluation of TMPRSS2 and ACE2 expres-
sion reported that both receptors were localized in nasal 
epithelial cells and AT2 cells (16, 70). AT2 cells have a 
critical role in normal pulmonary physiology because 
they secrete surfactant and produce alveolar type 1 cells 
during acute lung injury (ALI). Children have lower ill-
ness severity than their adult counterparts, which may 
be partly explained by an age-dependent decrease in 
ACE2 expression in nasal epithelium (71). The exact 
mechanism of SARS-CoV-2 infection of AT2 cells is 
under investigation, although it is clear that AT2 viral 
infection leads to significant lung injury and may partly 
explain pulmonary sequela observed in patients.

SARS-CoV-2 is a promiscuous virus with multiple 
mammalian hosts and hijacks a variety of different 
receptors and enzymes to invade cells. SARS-CoV-2 
enters cells (by exploiting Spike protein sites) via ACE2, 

dipeptidyl peptidase 4 (DPP4), CD147 (a highly gly-
cosylated cell surface protein with wide tissue expres-
sion), or the cathepsin pathway to cleave and facilitate 
viral entry (72–75). Blocking DPP4 attenuates ALI in 
a murine model, and DPP4 has been studied in airway 
remodeling and fibrosis, whereas CD147 has been 
implicated in mucus hypersecretion (76–78). Thus, 
identifying all receptors/proteases involved in SARS-
CoV-2 respiratory infection will enhance our mecha-
nistic insight into disease pathogenesis.

Autopsy of COVID-19 patient lungs reveals sev-
eral mechanistic clues for respiratory failure. First, 
there is evidence of increased angiogenesis based 
on imaging and gene expression data (79). Second, 
COVID-19 patients with ARDS display significant 
pulmonary fibrosis in the later disease stages, which 
impairs oxygenation (80). Third, significant deposi-
tion of microthrombi is common and may partly ex-
plain the proposed “L” (low lung weight, low elastance, 
and low inspiratory driving pressures) and “H” (high 
lung weight, high elastance, and high inspiratory driv-
ing pressures) ARDS phenotypes (81), although some 
experts have refuted the presence of the L pheno-
type. Fourth, COVID-19 patients are reported to have 
increased susceptibility to ventilator-associated pneu-
monia, for as yet undefined reasons compared with 
non–COVID-19 patients receiving invasive ventilation 
(82). Respiratory effects also occur along with MOF, 
profound alterations in coagulation, and hyperinflam-
matory cytokine profiles that are observed in other 
critical illnesses. Inflammation and tissue injury do 
not necessarily associate with the distribution of SARS-
CoV-2 RNA and protein in post mortem examinations 
of lungs from COVID-19 patients, indicating that the 
inflammatory response itself is responsible for much of 
the respiratory failure (83).The extrapulmonary mech-
anisms by which SARS-CoV-2 infection triggers respi-
ratory failure are discussed in subsequent sections.

Hematologic Dysfunction

COVID-19 disease significantly impacts the hematologic 
system and hemostasis. Prothrombin time (PT) and ac-
tivated partial thromboplastin time are prolonged and 
d-dimer levels are elevated, suggesting the presence of a 
consumptive coagulopathy such as disseminated intravas-
cular coagulation. Diffuse alveolar hemorrhage has been 
reported in COVID-19 patients, although a hypercoagu-
lable phenotype with micro/macrothrombi formation 
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in venous and arterial sites is more prevalent (12, 64, 
65). Thrombi have been documented in the pulmonary, 
renal, brain, hepatic, and cardiac vasculature. Marked 
d-dimer elevation accompanied by normal or increased 
platelet count and fibrinogen levels (84–86) is predictive 
of severe disease in COVID-19 infection (62). This pat-
tern, along with increased clot tensile strength without 
increased fibrinolysis on thromboelastomeric assays in 
COVID-19 patients (66), suggests that d-dimer eleva-
tion likely reflects the patient’s inflammatory response 
rather than consumptive coagulopathy. This is supported 
by differences in thrombi types between COVID-19  
patients and other critically ill patients, and the reduced 
effectiveness of anticoagulation therapy (either prophy-
lactic or therapeutic) in COVID-19–related thrombosis 
(87, 88).

It remains unclear why COVID-19–related coagu-
lopathy generates a thrombotic phenotype rather than 
a hemorrhagic phenotype. Recent data suggest that 
the thrombotic phenotype likely results from specific 
interactions between the host inflammatory response 
(e.g., complement) and activation of coagulation, 
platelets, and endothelial cells. SARS-CoV-2 infec-
tion promotes cytokine release through DAMPs, viral 
nucleic acid recognition, and RAS axis disruption. 
Reduced ACE2 levels may increase bradykinin lev-
els (89), which may promote coagulopathy in at least 
two distinct ways: 1) enhancing complement activa-
tion (27, 87) and 2) promoting neutrophil activation 
and NET formation. Inflammation generally activates 
the complement system, and subsequent depletion 
of plasma complement is associated with increasing 
disease severity and a prothrombotic state (Fig. 3)  
(90–94). Separately, bradykinin-induced neutrophil 
recruitment initiates a positive feedback pathway of 
thrombin-mediated platelet activation promoting 
NET formation, which further enhances inflammation 
and platelet activation and leads to NET colocalization 
with microthrombi (26, 95). Inhibition of NET forma-
tion reduces ARDS progression and thrombus forma-
tion in non–COVID-19 ARDS (96), whereas increased 
NET formation is associated with ARDS and COVID-
19 severity, supporting a role for NETs in increased 
thrombi risk in COVID-19 patients (88, 97–99).

SARS-CoV2 infection also elicits endotheliopathy, 
which likely has a role in thrombotic events (100). Several 
markers of platelet and endothelial activation/injury, 
including soluble P-selectin, soluble thrombomodulin, 

and von Willebrand factor (vWf), were higher in crit-
ically ill COVID-19 patients than in noncritically ill 
patients and healthy controls, suggesting that platelets 
and endothelial cells are involved in the infection path-
ophysiology. The frequency of thrombotic events is ap-
proximately nine-fold higher in COVID-19 patients 
with dyslipidemia than in those without (101, 102).  
A recent report linked dyslipidemia, hypertension, 
and endotheliopathy and demonstrated that lip-
ids (enhanced by low-density lipoproteins), rapid 
blood flow, and a disintegrin and metalloproteinase 
with a thrombospondin type 1 motif, member 13 
(ADAMTS13) modulate the formation of secreted vWf 
into long fibrils tethered to endothelial cells (103, 104). 
These studies suggest causative links between platelets, 
endothelial cells, and lipids in the venous and throm-
botic events observed in COVID-19 patients and may 
explain the need for therapeutic anticoagulation.

Another relevant hematologic perturbation is an as-
sociation between blood type and COVID-19 frequency 
and severity. A study of 2,173 COVID-19 patients re-
ported that more COVID-19 cases had type A blood 
(38% vs 32% community control) than type O blood 
(26% vs 35% community control) (105). Although 
there may be a protective effect of anti-A antibodies, 
the type A antigen itself is likely to be involved in stabi-
lizing vWf levels in blood, as blood group type A-vWf 
is more resistant to proteolysis than blood group type 
O-vWF (106, 107). African Americans with type A 
blood have higher baseline vWf levels than Caucasians 
(108), which could increase the risk of thrombotic 
disorders. A/B blood types are similar across ethnic 
groups and do not fully account for ethnic disparities 
in COVID-19 disease. Ethnic groups most affected by 
COVID-19 are more likely to inherit null traits for three 
lesser-known blood antigens. 1) The Duffy antigen re-
ceptor for chemokines (DARC) is a glycoprotein re-
ceptor for Plasmodium falciparum and is expressed 
on erythrocytes (109). 2) The DARC-null phenotype 
confers resistance to malaria and is carried by 68% of 
African Americans and 5% of Hispanics (110) com-
pared with 0% of Caucasians and 0% Chinese (109). 
DARC serves as a decoy receptor and is a “sink” for sev-
eral chemokines; loss of the DARC receptor in COVID-
19 could enable the cytokine storm and ARDS (111). 3) 
Lewis-null/Secretor-null individuals lack blood group 
system (AB) glycosylated antigens along epithelial lin-
ings in airways, gut, and kidney (109). Lewis antigens 
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are fucosyl groups that are up-regulated in bronchial 
epithelium after inflammation (112) and have discrete 
roles in dendritic cell activation (113) and neutrophil 
transepithelial migration (110). Secretor status pro-
motes some viral infections and inhibits others (109), 
although the effect on SARS-CoV-2 infection remains 
unclear. Lewis-null/Secretor-null is a rare phenotype 
that is three- to four-fold more frequent in African 
Americans and Brazilians than in Whites and Chinese 
(109). Thus, in addition to socioeconomic factors (e.g., 
healthcare access, nutrition, crowded housing, em-
ployment conditions) (114), DARC and Lewis-null/
Secretor-null alleles may contribute biological factors 
that drive ethnic disparities in severe COVID-19.

Future research on 
complement, coagula-
tion, platelet activation, 
NETs, thrombotic micro-
angiopathy (TMA), vWf, 
ADAMTS13, RAS axis, 
bradykinin, and blood 
type in COVID-19 disease 
will enhance our under-
standing of how SARS-
CoV-2 viral infection 
affects numerous tissues 
and organs through its 
effect on the vasculature. 
In addition, given recent 
reports about the potential 
protective effects of aspirin 
therapy, the effects of anti-
platelet agents (including 
aspirin, colchicine or 
P2Y12 inhibitors) in pre-
venting thrombotic events 
observed in COVID-19 
patients should be further 
investigated (115).

Cardiac Manifestations

Early population studies 
on COVID-19 detected a 
disproportionate number 
of deaths in patients with 
preexisting cardiovascular 
disease (36, 116). Patients 
with hypertension likely 

have RAS axis dysregulation, which may increase mor-
bidity and mortality. There is evidence that elevated 
troponin and N-terminal pro-brain natriuretic pep-
tide (NT-proBNP) levels are mortality risk factors in 
patients with and without preexisting cardiovascular 
disease (117). COVID-19 patients without preex-
isting cardiovascular disease can develop cardiovas-
cular manifestations such as arrhythmias, myocarditis, 
and heart failure (117), and sudden cardiac failure 
can occur 1–3 weeks after initial infection, even while 
patients’ MOF is improving (116). These combined 
results indicate that SARS-CoV-2 infection impacts 
the cardiovascular system during both acute and con-
valescent phases.

Figure 3. Proposed mechanism for severe acute respiratory syndrome–associated coronavirus 2 
(SARS-CoV-2)–induced coagulopathy and thrombotic microangiopathy. The SARS-CoV-2 virus 
directly injures cells/tissues and induces local and systemic inflammatory cascades, which induce the 
release of cytokines and damage/danger-associated molecular patterns (DAMPs) and activate three 
interconnected procoagulation pathways. Coagulation factor XII is activated during the contact phase 
of coagulation, thereby activating complement, thrombin, and a positive feedback loop for inflammation. 
Inflammation damages endothelial cells, further activating thrombin and polymorphonucleated cells 
(PMNs) via tumor necrosis factors (TNFs) and tissue factor (TF). Cytokines and DAMPs also directly 
activate PMNs, which initiates the development of NETosis and activates platelets. Activated platelets, 
neutrophil extracellular traps (NETs), and fibrin combine to form clinically significant clots in patients 
with coronavirus disease 2019 infections. CLOT = clot formation, EC = endothelial cell, FXII = factor 
XII, FXIIa = activated factor XII, HMWK = high molecular weight kininogen, NETosis = neutrophil 
extracellular traps, PK = prekallikrein, Plt = platelet. 
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A simple hypothesis of SARS-CoV-2–induced car-
diac dysfunction is through direct infection of the my-
ocardium and/or coronary endothelium. ACE2 and 
TMPRSS2 are expressed in both tissues; although the 
myocardium could theoretically act as a host for SARS-
CoV-2, there are no documented reports myocardial 
infection (118, 119). Viral RNA has been detected in 
the bloodstream, but infectious viral particles have not 
been isolated from blood, which may limit the poten-
tial for viral infection of myocardium or cardiac en-
dothelium (69, 120–124). There are reports of viral 
detection in myocardial tissue samples with possible 
myocarditis, although this could be explained by mi-
gration of infected macrophages from the lung into the 
myocardium (125–127).

An alternative hypothesis of SARS-CoV-2–induced 
cardiac dysfunction is that the proposed hyperco-
agulable state predisposes patients to develop coro-
nary artery thromboses and subsequent sudden heart 
failure, with elevated troponin and NT-proBNP levels 
reflecting direct myocardial injury. Only two studies 
reported ST-segment elevation in COVID-19 patients 
(128, 129), thus limiting current data in support of this 
hypothesis. However, myocardial infarctions are un-
likely to be a common occurrence in spite of the high 
prevalence of hypercoagulability, as myocardial bio-
markers are not detected at high frequency.

The prominent hyperinflammatory response may be 
responsible for the cardiac manifestations of COVID-19  
disease. Proinflammatory cytokines decrease left ven-
tricular function and lead to left ventricle dilation 
(130). Immune complexes and autoantibodies gener-
ated during hyperinflammatory states may precipi-
tate acute cardiomyopathy (131). Hyperinflammatory 
states associated with recruitment of macrophage and 
T cells to the heart may cause substantial cardiac in-
jury and the development of fulminant myocarditis  
(121, 125, 131, 132). Research investigating the under-
lying mechanisms of hyperinflammation in COVID-19  
should focus on its impact on cardiac function and the 
development of myocarditis.

Gastrointestinal and Hepatic Involvement

Various symptoms and laboratory abnormalities in-
dicative of gastrointestinal and hepatobiliary involve-
ment have been reported in COVID-19 patients. 
Reports of nausea, vomiting, diarrhea (up to 10%), and 

abdominal discomfort are common, and SARS-CoV-2 
RNA is detectable in the stool (133–135). Up to 31% of 
patients with COVID-19-associated ARDS were found 
to have elevated lipase levels without pancreatitis, sug-
gesting possible impairment in pancreatic microcir-
culation (136). Liver injury is more common in those 
with gastrointestinal symptoms and in the critically ill 
(133, 137). Gastrointestinal symptoms correlate with 
more severe COVID-19 illness (133). Possible routes 
for COVID-19 involvement in gastrointestinal include 
trachea-esophagus-ileum-colon and disruption of the 
gut-liver and gut-pulmonary axes (133, 138). ACE2 
and TMPRSS are expressed by absorptive enterocytes 
in the small and large bowel and likely have mecha-
nistic roles in gastrointestinal involvement (133, 138). 
Once infected, enterocyte malabsorption may lead to 
increased gastrointestinal wall permeability and en-
teric symptoms such as diarrhea (139).

In normal liver tissue, ACE2 expression in bile duct 
epithelial cells (cholangiocytes) is higher than that in 
hepatocytes (16, 133, 140). Hepatocyte ACE2 expres-
sion increases in chronic liver diseases and during 
hypoxia (125, 133). Isolated severe liver injury is rare 
and generally accompanies shock, respiratory failure, 
cardiac insufficiency, and/or renal insufficiency (137). 
Hepatocyte injury biomarkers (AST, ALT, LDH) may 
be increased, whereas liver synthetic function may 
be impaired as manifested by decreased albumin and 
increased PT (137).

Pathologic examination of COVID-19 patients 
may reveal moderate microvascular steatosis, mild 
sinusoidal dilatation, minimal lymphocytic infiltra-
tion, mild lobular and portal activity, multifocal he-
patic necrosis, and rarely canalicular cholestasis (126, 
141–143). Intranuclear or intracytoplasmic viral inclu-
sions have not been reported (126, 141). These results 
suggest that COVID-19–mediated hepatic injury has 
multifactorial etiology that may differ in individual 
patients (144). Potential mechanisms include: 1) di-
rect viral effects; 2) treatment-associated toxicity; 3) 
underlying disease predisposing to secondary injury; 
and 4) inflammatory response and other effects of se-
vere illness (e.g., parenteral nutrition, hypotension, 
hypoxia, mechanical ventilation with high positive 
end-expiratory pressure [18–20 cm H2O]) (133, 144, 
145). Identifying the subset of mechanisms that are op-
erating for a given patient may enable personalization 
of therapies to optimize outcomes.
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Renal Manifestations

The frequency of AKI in severe COVID-19 disease 
appears variable. Cohort studies using consensus defini-
tions report AKI rates of 0–39%, and 5–19% of critically 
ill patients require renal replacement therapy (146–
151). The underlying pathophysiology of COVID-19–
associated AKI may share similarities with other forms 
of multifactorial AKI in the setting of critical illness 
(152, 153). Current evidence from postmortem samples 
and limited biopsy series suggests a myriad of renal 
injuries (154–156), predominantly loss of proximal tu-
bular brush border and acute tubular injury or the pres-
ence of inflammatory cells/infiltrates, viral particles in 
the parenchyma, and fibrin thrombi (in approximately 
10% of samples). These results suggest a TMA/endothe-
lial injury process (157) but do not identify a specific 
cause of AKI. In many cases, injury may be from hypo-
tension-induced ischemia and hemodynamic sequelae 
of positive pressure ventilation that reduces renal perfu-
sion, reduces cardiac output, and increases renal venous 
pressures (158–162). Tubular injury may stem from 
nephrotoxin exposure, which traditionally accounts for 
up to 25% of all hospital-based AKI. Given the COVID-
19 polypharmacy in select scenarios, nephrotoxins un-
doubtedly complicate this issue (163).

There are conflicting reports regarding the virus 
in urine, although SARS-CoV-2 RNA/particles have 
been identified in urine (47, 154, 164, 165). In early 
AKI with a slightly injured tubule, the virus Spike pro-
tein may bind the ACE2 receptor and enter renal tu-
bular epithelial cells, where it can then replicate (55). 
Epithelial cell entry may explain some of the patholog-
ically observed renal injury patterns (16, 148). Genetic 
variations in the ACE2 receptor may contribute to the 
disproportionate impact of COVID-19 in certain sub-
populations. Several reports suggested associations 
between COVID-19–mediated AKI and collapsing 
glomerulopathy (157, 166–168). Collapsing glomeru-
lopathy is characterized by tuft collapse with podocyte 
hypertrophy and intracytoplasmic protein resorption 
droplets. It has been associated with high-risk APOL1 
alleles in individuals of African descent, thus pro-
viding a biologic factor that may explain ethnic dis-
parities in COVID-19 outcomes (168, 169). Collapsing 
glomerulopathy has been associated with other viral 
infections including HIV, Zika, and Dengue. The exact 
mechanisms and links of collapsing glomerulopathy to 
the APOL1 gene remain under intense investigation. 

Future investigations into COVID-19–associated AKI 
should examine the specific impact of ACE2 and apoli-
poprotein L1 on the development of severe AKI.

Neurologic Manifestations

CNS involvement of human coronavirus infections 
has been extensively documented (170–172). CNS 
manifestations of SARS-CoV-2 infection have been re-
ported in 14–36% of hospitalized patients, including 
altered mental status, temporary anosmia, seizures, en-
cephalitis, and ischemic stroke (173–175). These CNS 
pathologies may be related to direct viral neurotropism, 
CNS migration of infected peripheral immune cells, or 
secondary to systemic infection (176, 177). Autopsy of 
COVID-19 patients revealed virus in brain tissue, pri-
marily in neurons (64, 178). Neurons and the capillary 
endothelium express ACE2 receptors, providing two 
possible routes for brain invasion (59). Intranasal in-
oculation of SARS-CoV-2 in transgenic mice express-
ing human ACE2 resulted in rapid and widespread 
infection of primarily neurons and astrocytes in the 
brain (179). Anosmia is reported in patients infected 
with SARS-CoV-1 and SARS-CoV-2, thus support-
ing this route of entry, but olfactory tract abnormali-
ties have not been observed in MRI (174, 180, 181).  
Coronaviruses infect macrophages and glial cells, 
but there is currently little evidence that peripheral 
immune cell infection leads to CNS access (182, 183).  
COVID-19–induced MOF may result in brain tissue 
hypoxia/ischemia and blood-brain barrier disruption, 
thereby potentially allowing SARS-CoV-2 access to the 
CNS via the blood stream, although further data are 
needed to support this hypothesis. Further work also is 
needed to optimize testing modalities and procedures 
as the duration of SARS-CoV-2 in cerebrospinal fluid 
after symptom onset is unknown.

Up to 31% of critically ill COVID-19 patients have 
thromboembolic complications (184, 185). The fre-
quency of ischemic stroke in COVID-19 patients is 
currently unknown, although one retrospective study 
reported an frequency as high as 2.8% in hospitalized 
COVID-19 patients with severe disease (173). A case 
series of six patients with COVID-19 and ischemic 
stroke reported that patients had moderate to critical 
disease and an 8–24-day interval from COVID-19 
symptom onset to stroke symptoms (186). Possible 
indications and patient selection criteria for sys-
temic anticoagulation therapy to reduce stroke risk in 
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COVID-19 patients remain to be determined, along 
with any beneficial changes in the approach to sys-
temic thrombolysis or endovascular therapy. Several 
studies reported that mechanically ventilated COVID-
19 patients require unusually high levels of sedation 
with a markedly higher frequency of delirium (187–
198). Increased delirium rates may be due to direct 
virus or inflammation-mediated effects, greater seda-
tion requirements, or other yet unidentified factors.

Influenza pandemics before the 20th century were 
historically followed by increased reports of neuro-
psychiatric symptoms including psychosis, depres-
sion, anxiety, insomnia, and mania (199, 200). Recent 
viral pandemics and epidemics (influenza H1N1, 
SARS-CoV-1, and Middle East respiratory syndrome–
associated coronavirus) have been associated with neu-
ropsychiatric sequelae including narcolepsy, seizures, 
and demyelinating processes (201–203). It will be cru-
cial to institute longitudinal studies to assess COVID-19  
association with long-term neuropsychiatric sequelae 
to determine the disease burden and identify pos-
sible therapeutic interventions, particularly given the 
emerging recognition of post-ICU syndrome and 
long-haul disease among COVID-19 survivors.

Endocrine Manifestations

Obesity and type 2 diabetes mellitus (DM) are impor-
tant risk factors associated with COVID-19 severity, 
morbidity, and mortality (204–207). Adiposity pro-
motes chronic low-grade inflammation and immune 
dysregulation, leading to a more robust inflammatory 
response, profound adaptive immune suppression, and 
reduced viral clearance during infection with SARS-
CoV-2. Patients with obesity or type 2 DM may have 
a chronic endotheliopathy and prothrombotic state 
associated with dyslipidemia and high levels of cir-
culating vWf, as noted above (208); when combined 
with COVID-19–mediated coagulation perturbations, 
the risk of cardiovascular and CNS thrombotic events 
increases (209).

Uncontrolled hyperglycemia is associated with poor 
outcomes in COVID-19 (209, 210). This may result 
from hyperglycemia-associated glycosylation of ACE2 
and viral Spike proteins that facilitate entry into target 
host cells, thus increasing viral loads and suppressing 
viral clearance. Studies on SARS-CoV-1 suggest that 
the virus may directly infiltrate ACE2-expressing pan-
creatic islet cells, thereby reducing insulin production 

and causing hyperglycemia (210). It is currently un-
known whether islet cell damage is transient or per-
manent in COVID-19 survivors. Growing evidence 
suggests that SARS-CoV2 infection may trigger new 
onset diabetes, either via direct pancreatic invasion or 
due to the immune response to the virus (211–213).

Adrenal insufficiency is an uncommon early find-
ing in COVID-19, and higher serum cortisol levels 
have been associated with increased mortality (214). 
Persistent fatigue and malaise following SARS-CoV-2 
infection may be related to postinfection adrenal in-
sufficiency. Direct viral CNS infiltration may enable 
infection of pituitary gland cells, leading to transient 
suppression of the hypothalamic-pituitary-adrenal 
axis. Alternatively, adrenal insufficiency may be caused 
by immune-mediated hypophysitis (215). Bilateral ad-
renal hemorrhage secondary to renal vein and adrenal 
plexus thrombosis was reported in a COVID-19 pa-
tient who had positive antiphospholipid antibodies 
(216). Systemic corticosteroid therapy has been quite 
successful in treating patients with severe COVID-19,  
which may reflect both the anti-inflammatory effects 
of steroids but also partial treatment of adrenal 
insufficiency.

Patients often develop low levels of thyroid-stimu-
lating hormone and triiodothyronine during the early 
phases of critical COVID-19 illness, which typically 
normalize during recovery (215). Although this may 
represent euthyroid sick syndrome, there is evidence 
that SARS-CoV-1 virus can directly invade and affect 
thyroid tissue (205, 217, 218). This could explain late-
onset subacute thyroiditis observed in COVID-19 
patients, possibly secondary to immune-mediated 
processes that cause thyrotoxicosis to hypothyroidism. 
However, these mechanisms have yet to be elucidated 
(217, 218).

Dermatologic Manifestations

Cutaneous manifestations have been reported in 
5–20% of symptomatic COVID-19 patients (219–221). 
Erythematous macules or papules over the trunk and 
extremities, comparable with those observed in other 
viral exanthems, occur early in the infection and are the 
most common cutaneous manifestation. The rash may 
be pruritic, lasts for a median of 10 days, and gener-
ally is associated with a more favorable clinical course 
(222). The exanthem results from perivascular derma-
titis and vasculitis with neutrophilic and lymphocytic 
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infiltration as a response to the virus (223). Urticaria, 
with or without angioedema, comprises up to 20% 
of the rashes observed in COVID-19, particularly in 
those with more severe disease (224, 225). Vesicular 
eruptions (similar to those of chickenpox) are associ-
ated with moderate disease severity, exhibit acantholy-
sis with dyskeratosis, and may be due to a cytopathic 
effect of viral invasion (226). Purpura or petechiae are 
uncommon and have been reported in patients with 
thrombocytopenia and coagulopathy (221). Livedo rac-
emosa resembles livedo reticularis but is more diffuse 
and likely secondary to small or medium vessel vascu-
lopathy with occlusive microthrombi or immune com-
plexes, complement deposition, and reperfusion injury. 
The term “COVID toes” is used to describe a chilblain-
like lesion in COVID-19 patients. Unlike their idio-
pathic counterpart, COVID-related chilblains occur in 
the absence of exposure to cold. These acral lesions are 
often the only presenting symptom of COVID-19 in-
fection and are likely caused by immune complex dep-
osition or microthrombi (227–231). Two recent studies 
present comprehensive depictions of the most common 
cutaneous manifestations of COVID-19 (230, 231).

FUTURE AREAS FOR RESEARCH AND 
CONCLUSIONS

The COVID-19 pandemic will persist well in to 2021 
and beyond. Further investigations on the mecha-
nisms underlying the frequency, prevention, and treat-
ment of COVID-19–related organ failure are urgently 
needed. The current hypotheses of hyper- and hypoin-
flammation driving the clinical disease course do not 
facilitate consensus views for therapeutic approaches. 
Future research should use multiomic methods to re-
fine descriptive findings and identify relevant signal-
ing pathways. These studies should include patients 
with different age, sex, and race, as potential therapies 
may not be efficacious across heterogeneous popula-
tions. Although a vaccine holds the most promise, it 
is likely that adjunctive immunorestoration or anti-
viral therapies are needed to improve outcomes. These 
approaches should be based on specific immune signal-
ing pathways rather than observed changes in nonspe-
cific biomarkers. Given that there are several distinct 
strategies for vaccine development (messenger RNA, 
viral vector, adjuvanted protein, and inactivated virus), 
the impact of these different strategies on the immune 
response, as well as the impact on organ dysfunction 

among immunized individuals who become infected, 
remains an unanswered question. For example, given 
the now known early induction of cellular immune ex-
haustion by SARS-CoV-2 infection that limits T and B 
cell responses, vaccine development must include in-
duction of both of these responses including antiviral 
CD8+ T cells to provide robust protection from severe 
disease (232). However, it is unclear how patients that 
have already acquired the disease when the optimal 
time for vaccination should occur to maximize pro-
tection? In addition, the recent emergence of SARS-
CoV-2 variants raises additional translational research 
questions: what is the nature of the immune response 
triggered by such variants, and is their increased trans-
missibility a reflection of a distinct immune response? 
Do these variants result in differential organ dysfunc-
tion among infected patients? The critical care research 
community is well poised to merge basic science with 
translational, clinical, and big data approaches to tackle 
this devastating illness.
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