Tenosynovial giant cell tumor of the distal tibiofibular joint

Stephanie Zarate
Miami Cancer Institute, StephanieZa@baptisthealth.net

Ana Cecilia Belzarena Genovese
Baptist Health Medical Group; Miami Cancer Institute; Miami Orthopedics & Sports Medicine Institute, ceciliabel@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications

Citation
Radiol Case Rep (2021) 16(4):950-955

This Article – Open Access is brought to you for free and open access by Scholarly Commons @ Baptist Health South Florida. It has been accepted for inclusion in All Publications by an authorized administrator of Scholarly Commons @ Baptist Health South Florida. For more information, please contact Carrief@baptisthealth.net.
Case report

Tenosynovial giant cell tumor of the distal tibiofibular joint

Stephanie D. Zarate, PA-C, David M. Joyce, MD, Ana C. Belzarena, MD

 Orthopaedic Oncology Department, Miami Cancer Institute, 8900 N Kendall Dr., Miami, FL 33176, USA
 Sarcoma Department, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA

Abstract

Tenosynovial giant cell tumors are extremely rare tumors with highly nonspecific symptoms. This benign but aggressive disease has a slow course of progression; however, it can ultimately lead to irreversible damage to a joint. Here we describe a case of a 45-year-old female with a diagnosis of tenosynovial giant cell tumors of the distal tibiofibular joint, the second case described in the literature for such location. Appropriate imaging studies and ultimately histologic studies are necessary for the correct diagnosis. Some locations are particularly unusual for these tumors making a high level of suspicion as well as treatment by an orthopedic surgery specialist at a high-volume center paramount.

Keywords:
Tenosynovial giant cell tumor
Tibiofibular joint
Pigmented villonodular synovitis

Introduction

Tenosynovial giant cell tumors (TGCT) were first described in 1941 by Jaffe and include a group of tumors present usually in relationship with synovium, bursas or tendon sheaths [1]. In 2013 the World Health Organization re-named this disease from what was formerly being called extra-articular giant cell tumor of tendon sheath and nodular tenosynovitis to localized TGCT, while what was initially called intra-articular pigmented villonodular synovitis was renamed diffuse TGCT and includes the diffuse-type giant cell tumors [2]. This disease affects most commonly adults between the third and fourth decade of life but has been known to affect the pediatric population as well [3,4]. Additionally, TGCT demonstrates a slight predominance for females (60%) [3]. TGCT is in the vast majority of the cases a monoarticular disease although multijoint affection has been reported; moreover, as previously mentioned it can present as a localized nodule or diffusely affecting a joint [5,6]. The prevalence of TGCT is thought to be of 1.8 cases per million for the diffuse form and 9.2 per million for the localized form [7]. The localized form of this disease affects more commonly the hands and digits, followed by foot and ankle, while the diffuse form involves mainly the knee, followed in frequency by hip, ankle, and elbow [2,8]. Symptoms are nonspecific which along the rarity of this disease can cause a significant delay in the diagnosis of these patients [9]. Because this is a slow progressing disease time from initial symptoms to the final histologic diagnosis can vary from a year to 3 years [10]. Patients...
can present with pain, swelling and limitation of the affected joint as well as repeated episodes of hemarthrosis over time [9,11].

Here we describe a case of TGCT of the distal tibiofibular joint, an extremely rare location, managed by surgical resection. To the best of our knowledge this is the second localized case in such location to be described in literature.

Case report

A 45-year-old female with history of costochondritis, fibrocystic breasts, hypercholesterolemia, and gastroesophageal reflux disease, was referred to our orthopedic oncology clinic for further evaluation and management of a left ankle le-
sion found on recent imaging studies. During the initial visit, the patient reported left ankle pain which was new and had been present for 2 months. Patient stated the pain was moderate and controlled by nonsteroidal anti-inflammatories. Due to her pain, she was unable to exercise and required the use of a cane for assistance with ambulation. In addition, patient reported recent fatigue. She denied night sweats, chills, fever, unintentional weight loss, and loss of appetite. On physical examination, no palpable mass, tenderness, erythema, or swelling over the left ankle were noted. Range of motion and sensation in the ankle were within normal limits.

Prior to initial consultation, the patient obtained several diagnostic imaging studies due to a new mass noted on her breast. A positron emission tomography with computed tomography scan was obtained (July 2020) and revealed a lesion in the distal tibiofibular joint with fluorodeoxyglucose uptake and a maximum standardized uptake value of 7.9 (Fig. 1). A decision was made to obtain a contrasted magnetic resonance imaging (MRI) study. The MRI of the left ankle with and without Gadolinium contrast obtained in August 2020 demonstrated an enhancing 2.2 × 1.8 × 3.5 cm soft tissue mass at the syndesmosis space corresponding to the area of hyper-metabolic activity on the positron emission tomography with computed tomography scan (Fig. 2). Small foci of T1/T2 hypo-intense signal within the mass, a possible reflection of mineralization, was also reported. In addition, the MRI reported an area of cortical scalloping over the distal lateral tibia suggesting a chronic nonaggressive process with no abnormal marrow signal or other evidence of osseous infiltration, however overall characteristics of the mass were indeterminate and tissue sampling was recommended to exclude malignancy.

It was decided to proceed with an open biopsy of the left ankle mass under fluoroscopic guidance (Fig. 3). A 3 cm incision was made over the distal posterior aspect of the left lateral malleolus. Dissection was carried down to bone with a cautery. The fibular tendon and muscle were retracted medially and the posterior aspect of the tibiofibular joint visualized. A mass with yellowish and brown components was then observed, and samples were obtained for frozen and permanent pathology analysis (Fig. 4). Pathology report revealed a diagnosis of giant cell tumor of tendon sheath.

Patient was taken to the operating room 3 weeks later for left ankle tumor resection under fluoroscopic guidance. A 4 cm incision was done over the prior incision over the distal posterior aspect of the left malleolus. Deep dissection was carried down bluntly. The fibularis tendons were retracted distally and the posterior aspect of the tibiofibular joint was accessed. The TGCT was identified, marginally resected, and sent to pathology for analysis. Pathology report revealed mass to be synovial tissue with nodular hyperplasia with pigment deposition consistent with TGCT (Fig. 5).

Patient is currently 3 months post tumor resection with completely resolution of her ankle symptoms. Patient was recommended physical therapy and will continue surveillance studies with a new contrasted MRI in 6 months.

Discussion

TGCT are a group of benign tumors and although the disease tends to be slow growing it can potentially damage a joint and severely affect the quality of life of these patients [9,10]. The disease usually presents in young adults with highly nonspecific symptoms which leads to the diagnosis often times being delayed for years. The etiology of this disease is not known though the mechanism by which it damages the joints has been identified [12,13]. There is an uncontrollable proliferation of the synovium (villonodular proliferation), hemosiderin deposits which causes the pigmentation seen in our mass (Fig. 4), the tumor cells attract an inflammatory infiltrate with mononuclear and multinuclear osteoclast-giant cells that along with the repetitive episodes of hemarthrosis are thought to be responsible for the joint damage [14,15].

On radiographs this disease can present as a joint effusion as well as bone erosion; with rare but described calcifications within the tumor [16,17]. The bone lesions present a sclerotic margin and are usually present in both sides of the joint [16]. As with most tumors the preferred imaging study is an MRI with and without contrast. There TGCT is depicted as a localized or diffuse mass with heterogeneous low signal intensity on T1 and T2-sequences that enhances with Gadolinium. Blooming effect is also usually observed due to the magnetic effect the iron within the hemosiderin deposits causes [18]. Some areas with low hemosiderin concentration can also display a high intensity on T1 and T2 sequences, but the classical image is the one of a mass low in T1 and T2 sequences [18]. More recently PET-CT scans have also been used to study TGCT and also to assess treatment effect when a systemic modality of treatment is chosen [19]. TGCT lesions present with significant uptake and can have a mean standardized uptake value of 8.7 behaving as hypermetabolic tumors, a characteristic that can mislead radiologists towards a malignant diagnosis such as sarcoma or metastatic disease [20,21].

On histopathology analysis TGCT present as a combination in variable proportions of small histiocytes, mononuclear cells with eccentric nuclei, eosinophilic cytoplasm, and a peripheral rim of hemosiderin, osteoclasts-like giant cells, xanthomatous (foamy) macrophages, lymphocytes, and plasma

Fig. 3 – Fluoroscopic images used for guidance during the biopsy mini-open procedure. A pituitary instrument is observed within the distal tibiofibular joint.
Due to this common facade of an inflammatory infiltrate, there was an initial thought that there was an inflammatory component to the nature of this disease, leading some to claim it was an inflammatory process such as rheumatoid arthritis, but a clonal mutation was identified which allowed to confirm the tumoral nature of this lesion [23,24]. A specific translocation involving chromosomes 1 and 2, causing the overexpression of colony-stimulating factor 1 (CSF1) was identified in 2006 as critical for development of this disease [24]. The augmented CSF1 expression is only found in 2%-16% of the cells, the remaining cells being the nonspecific inflammatory infiltrate previously described. These inflammatory cells are attracted due to a receptor that responds to the over-expressed factor (CSF1R) [24]. Currently available treatment...
options target this receptor to address TGCT, when resection is not indicated [25].

Treatment for TGCT is predominantly surgical, with excision of the tumor. Depending on the location and the extent of disease, the procedure may be done open or arthroscopically. The rate of recurrence for this disease is high, 14%-40%, which causes patients to undergo several surgical procedures, future joint replacements, decreased range of motion and low quality of life [26,27]. Radiation therapy has been advocated as an option to decrease recurrence in diffuse TGCT however is not free of complications such as joint stiffness, osteoarthritis, osteonecrosis, and malignant transformation or secondary radiation induced sarcomas [28].

Conclusion

TGCT are benign but aggressive soft tissue tumors with highly nonspecific symptoms at presentation. Some locations such as the distal tibiofibular joint are particularly unusual and a high level of suspicion as well as the correct imaging studies are paramount for the correct diagnosis of this rare disease as it could be confused with a degenerative cyst. These tumors although slow growing have the potential to irreversibly damage a joint, making appropriate diagnosis and treatment by an oncology orthopedic surgery specialist at a high-volume center of the utmost importance.

Patient Consent

Per the local Institutional Review Board consent was exempt due to this being the case of research involving the collection or study of existing data, documents, records, pathologic specimens, or diagnostic specimen with the information being recorded by the investigator in such a manner that subjects cannot be identified, directly or through identifiers linked to the subjects.

REFERENCES

