Surgical Repair of an Unstable Third Metatarsophalangeal Joint Dislocation via Direct Plantar Plate Repair: A Simple and Effective Technique

Christopher Hodgkins
Baptist Health Medical Group; Miami Orthopedics & Sports Medicine Institute, chrish@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications

Citation
International Journal of Foot and Ankle (2020) 3:030

This Article -- Open Access is brought to you for free and open access by Scholarly Commons @ Baptist Health South Florida. It has been accepted for inclusion in All Publications by an authorized administrator of Scholarly Commons @ Baptist Health South Florida. For more information, please contact Carrief@baptisthealth.net.
Surgical Repair of an Unstable Third Metatarsophalangeal Joint Dislocation via Direct Plantar Plate Repair: A Simple and Effective Technique

Christopher W Kinter, MD1,2*, Kevin J Kinter, MS2 and Christopher W Hodgkins, MD2,3

1Department of Orthopaedics, Emory University School of Medicine, USA
2Herbert Wertheim College of Medicine, Florida International University, USA
3Miami Orthopedics and Sports Medicine Institute, Baptist Health South Florida, USA

*Corresponding author: Christopher W Kinter, MD, Department of Orthopaedics, Emory University School of Medicine, Decatur, Georgia, USA

Abstract
Traumatic dislocation of a lesser metatarsophalangeal (MTP) joint is a rare case for a foot and ankle surgeon to encounter. These dislocations can be difficult to reduce due to the surrounding connective tissues that may be interposed in the joint space. These include the plantar plate, deep transverse metatarsal ligament, flexor tendons, and lumbricals. When the clinician is unable to reduce the phalanx, surgery is required to prevent sequelae such as further swelling, ecchymosis, joint damage, and impingement of the neurovascular bundle. In this case report, we present the case of a 53-year-old female who suffered a traumatic dislocation after a low-energy trip and fall injury. The MTP joint was found to be unstable, and therefore, we managed the dislocation through open reduction and direct repair of the plantar plate via a plantar approach. We feel the plantar plate repair makes our case unique as well as superior because it allows better visualization and obviates the need for further fixation with a K-wire.

Keywords
Metatarsophalangeal joint, Dislocation, Plantar plate, Open reduction, Plantar approach

Introduction
Dislocation of the metatarsophalangeal (MTP) joint is an uncommon injury. It is usually due to high energy impact directed at the base of the joint [1]. This typically occurs when the toes are extended and the ankle is slightly plantar flexed [1,2]. This force causes a dorsal dislocation of the MTP joint, which is far more common than plantar dislocation [1,3,4]. This dislocation is best treated by closed reduction, which is typically stable once reduced. However, there can be interposed ligaments and tendons that make this difficult. An irreducible MTP joint is typically handled surgically from a dorsal approach which requires pinning to maintain the reduction [3,5,6]. With a dorsal approach, it can also be difficult to visualize and repair plantar plate damage [7]. These challenges have driven the need for other surgical approaches. Reduction via a plantar approach can be less technically demanding and allows for full visualization of the plantar plate. Here we present the case of a low energy third MTP joint dislocation that was reducible but unstable, and explain how our use of the plantar approach resulted in stable fixation without the need for pinning.

Case Description
A 53-year-old female presented to our clinic three weeks after a low energy trip and fall in which she injured her left forefoot. A history and physical exam revealed obesity to be the patient’s only comorbidity. She had a body mass index (BMI) of 45. She originally went to an urgent care clinic. Radiographs at that time were...
Plantar plate tear. She went back to the urgent care clinic where multiple unsuccessful attempts were made to reduce the dislocated third MTP joint.

At 3 weeks post-injury, she presented to our office. She was full-weight-bearing in a walking boot with swelling, tenderness, and decreased motion of her third MTP joint. The toe appeared laterally displaced and elevated. Radiographs revealed a dorsal dislocation of the third MTP joint (Figure 1). The toe was reducible but unstable. We attempted to hold the

normal. She was provided with a walking boot. She walked on the foot for several days, however she developed increased pain on the dorsal and plantar aspect of the third MTP joint, prompting her to go to an orthopedic walk-in clinic. She previously had a neuroma in her right foot with similar symptoms, so her present symptoms were attributed to this. A steroid injection was administered, which did not help alleviate her symptoms. A Magnetic Resonance Imaging (MRI) study was ordered, revealing a dislocated third MTP joint and associated

plantar plate tear. She went back to the urgent care clinic where multiple unsuccessful attempts were made to reduce the dislocated third MTP joint.

At 3 weeks post-injury, she presented to our office. She was full-weight-bearing in a walking boot with swelling, tenderness, and decreased motion of her third MTP joint. The toe appeared laterally displaced and elevated. Radiographs revealed a dorsal dislocation of the third MTP joint (Figure 1). The toe was reducible but unstable. We attempted to hold the

---

**Figure 1:** Radiographs of the left foot demonstrating dorsal dislocation of the 3rd MTP joint. A) Preoperative AP; B) Preoperative Lateral; C) Postoperative AP; D) Postoperative lateral.

---

**Figure 2:** A) Illustration showing torn plantar plate; B) Illustration showing repaired plantar plate sutured in a horizontal mattress fashion with three interrupted positions.
At 3-month follow-up, the toe was still reduced, albeit with subtle radiographic lateral subluxation. She still had pain of 2 out of 10 on the Visual Analog Scale (VAS) and still had some hypersensitivity of the incision, which we attributed to digital nerve irritation.

In her most recent visit, at 1-year post-operation, she is now pain-free without any nerve pain. The slight lateral subluxation persists, as can be seen in Figure 4. She is using a custom metatarsal pad orthotic and avoiding barefoot walking or high impact activity until she can lose some weight.

**Discussion**

There is limited literature discussing how to handle a traumatically dislocated MTP joint. The most common MTP joint dislocation described is of the first MTP joint, with few reported cases of dislocated lesser MTP joints [1,5,8]. The mechanics of this injury are usually due to an impact to the base of the MTP joint causing hyperextension and dorsal dislocation [1,3,5]. High energy impact with the ground or impact of the foot during a motor vehicle accident are commonly described causes [3,5]. These dislocations typically occur in the dorsal direction due to weaker connective tissue, in the dorsal aspect of the MTP [1]. In addition, MTP

---

**Figure 3:** Preoperative MRI of the left foot showing the dorsal dislocation of the third MTP joint and a plantar plate tear.
After successful reduction, the physician should evaluate the integrity of the ligaments to ensure stability and strength [8]. Further stability can be achieved through taping the toe in a neutral position and allowing capsular scar tissue to develop over several months if only minor damage is present [10]. However, often the phalanx is irreducible [2-5,12,13]. This is due to the possible interposition of the many surrounding connective tissues that stabilize the MTP joint including the plantar plate, deep transverse metatarsal ligament, flexor tendons, and lumbricals [4,5,12].

When closed reduction is not possible, or if the reduction is not stable, operative reduction and stabilization is required to restore normal forefoot function, alleviate pain, and prevent complications [4,12]. Possible complications of delayed reduction include further swelling, ecchymosis, nerve damage and vascular damage to the skin [8,12]. In one case, the patient experienced avascular necrosis of the metatarsal head presumed to be due to a delay in reduction, which the authors described as analogous to hip dislocations [12]. There is also an incre-

![Figure 4: Radiographs at 1-year post-operation showing subluxation of the 3rd MTP joint. A) Anteroposterior; B) Oblique; C) Lateral.](image)
ased risk of impingement of surrounding neurovascular structures and potential joint damage.

Most cases in the literature use a dorsal approach for operative reduction \([2,3,5,12]\). However, this ignores the associated tear in the plantar plate. The plantar plate is critical for stability of the MTP joint, so these surgeons often need to fixate the proximal phalanx with a k-wire \([5,6]\). Our technique utilizes a plantar approach, which allows for successful reduction of the MTP joint as well as stabilization of the plantar plate. Nakano, et al. described using this approach for traumatic irreducible MTP joint, and explained that it offers the benefit of being able to look at the obstruction directly, as well as adding stability without the need for a k-wire \([4]\). Good results were described at two year follow-up in their case report. In plantar plate repairs, iatrogenic irritation of the digital neurovascular bundle is always a concern. Careful surgical technique, dissection, and retraction is always mandatory. However, even with such attention to detail, residual neurogenic symptoms can occur. Regardless, the plantar approach has proven to significantly reduce pain, alleviate disability, and restore function to the forefoot \([14]\).

**Summary**

Our case supports the use of direct repair of a plantar plate tear because it allows for restoration of the anatomy of the durable plantar plate, adding stability to the MTP joint for tensile and compressive forces on the joint \([15,16]\).

**Conflicts of Interest**

There are no conflicts of interest.

All correspondence should be through Christopher W Kinter.

**References**


