Baptist Health South Florida

Scholarly Commons @ Baptist Health South Florida

All Publications

5-2020

Evaluating the Association Between Vasopressin Use and In-Hospital Mortality in Patients with Septic Shock

Michael Pasqualicchio Baptist Hospital of Miami, michaelpa@baptisthealth.net

Heidi Clarke Baptist Hospital of Miami, heidic@baptisthealth.net

Jonathan Kline Baptist Hospital of Miami, JonathanDK@baptisthealth.net

Payal Patel Baptist Hospital of Miami, PayalDP@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications

Part of the Chemicals and Drugs Commons, Critical Care Commons, and the Pharmacy and **Pharmaceutical Sciences Commons**

Citation

Pasqualicchio, Michael; Clarke, Heidi; Kline, Jonathan; and Patel, Payal, "Evaluating the Association Between Vasopressin Use and In-Hospital Mortality in Patients with Septic Shock" (2020). All Publications. 3535.

https://scholarlycommons.baptisthealth.net/se-all-publications/3535

This Conference Lecture -- Open Access is brought to you for free and open access by Scholarly Commons @ Baptist Health South Florida. It has been accepted for inclusion in All Publications by an authorized administrator of Scholarly Commons @ Baptist Health South Florida. For more information, please contact Carrief@baptisthealth.net.

Evaluating the association between vasopressin use and in-hospital mortality in patients with septic shock

Michael Pasqualicchio, PharmD, BCPS PGY-2 Critical Care Pharmacy Resident Baptist Hospital of Miami Michaelpa@baptisthealth.net

Disclosure statement

The following contributors have nothing to disclose regarding any financial or nonfinancial relationships with the products described, reviewed, or evaluated in this presentation:

- Michael Pasqualicchio, PharmD, BCPS
- Heidi Clarke, PharmD, BCCCP
- Jonathan Kline, PharmD, BCCCP
- Payal Patel, PharmD, BCCCP

Presentation objective

Evaluate the mortality associated with adding vasopressin to both low-dose and high-dose vasopressors in patients with septic shock

Sepsis

- Uncontrolled, generalized, intravascular inflammatory response to infection
- Most common cause of death in intensive care units (ICUs)¹
 - Increasing incidence over the last 10 years
 - In-hospital mortality rate of greater than 40%²
 - Most expensive condition to treat in 2013: \$24 billion in annual costs³
- Treatment:
 - Fluid resuscitation (30 ml/kg)
 - Prompt administration of broad-spectrum antimicrobial agents
 - Vasoactive medications

Surviving Sepsis Guidelines

- Norepinephrine recommended as first-choice vasopressor (strong recommendation, moderate quality of evidence)
- Suggest adding either vasopressin (weak recommendation, low quality of evidence) or epinephrine (weak recommendation, low quality of evidence)
 - Raise MAP to target (recommended target of 65 mmHg)
 - Decrease norepinephrine requirements

Vasopressin mechanism

- Distinct mechanism compared to catecholamine agents
- Activates V1 receptors
 - Induces constriction of vascular smooth muscle cells through increased intra-cellular calcium and decreased nitric oxide induced vasodilation
- Endogenous levels initially increase in response to hypotension but quickly decline within 36 hours
- Maintains efficacy in acidotic state

VASST trial

- Multi-center, randomized, double-blind trial
- Patients receiving norepinephrine at a minimum rate of 5 mcg/minute were randomly divided into two groups:
 - Low-dose vasopressin (in addition to open-label vasopressors)
 - Norepinephrine (in addition to open-label vasopressors)
- Primary outcome: 28-day mortality after the initiation of study infusion
- Sub-group analysis that divided patients into additional two groups:
 - Less severe shock: Norepinephrine rate 5-14 mcg/minute at randomization
 - More severe shock : Norepinephrine rate ≥15 mcg/minute at randomization

VASST trial results

Outcome	Norepinephrine (n=382)	Vasopressin (n=396)	p-value	
Time to study drug infusion - hours	11.5 <u>+</u> 9.4	11.9 <u>+</u> 8.9	0.57	
28-day mortality – no (%)	150 (39.3)	140 (35.4)	0.26	
90-day mortality – no (%)	188 (49.6)	172 (43.9)	0.11	
More severe shock – NE ≥ 15 mcg/minute				
28-day mortality – no/total no (%)	85/200 (42.5)	88/200 (44.0)	0.76	
90-day mortality – no/total no (%)	105/199 (52.8)	103/199 (51.8)	0.84	
Less severe shock – NE 5-14 mcg/minute				
28-day mortality – no/total no (%)	65/182 (35.7)	52/196 (26.5)	0.05	
90-day mortality – no/total no (%)	83/180 (46.1)	69/193 (35.8)	0.04	

VANISH trial

- Factorial, double-blind, randomized trial
- Four groups:
 - Vasopressin and hydrocortisone
 - Vasopressin and placebo
 - Norepinephrine and hydrocortisone
 - Norepinephrine and placebo
- Primary outcome: Kidney failure-free days 28-days post randomization

VANISH trial results

Outcome	Vasopressin + hydrocortisone (n=100)	Vasopressin + placebo (n=104)	Norepinephrine + hydrocortisone (n=101)	Norepinephrine + placebo (n=103)
Time to study drug infusion - hours	3.2 (1.8-5)	3.5 (2.5-5.4)	3.7 (1.7-5)	3.5 (1.4-5.4)
28-day mortality – no/total no (%)	33/100 (33.0)	30/104 (28.8)	29/101 (28.7)	27/103 (26.2)
ICU mortality – no/total no (%)	32/100 (32.0)	26/104 (25.0)	24/101 (23.8)	27/103 (26.2)
Hospital mortality – no/total no (%)	35/100 (35.0)	33/104 (31.7)	31/101 (30.7)	29/103 (28.2)
Time to shock reversal - hours	50 (28-92)	59 (27-112)	46 (23-72)	44 (23-90)

Additional studies

Trial	Comparison	Outcomes
Reardon et al. ⁹ Single-center, retrospective, chart- review N=71	Vasopressin initiation within 6 hours of shock onset vs. vasopressin within 6-48 hours of shock onset	 Early vasopressin resulted in significantly less new-onset arrhythmias No difference in duration of catecholamine and vasopressin therapy No difference in mortality or ICU/hospital length of stay
Hammond et al. ¹⁰ Single-center, prospective, open- label study N=82	Early addition of vasopressin within 4 hours of septic shock onset vs. norepinephrine monotherapy	 Significantly shorter time to MAP target (7.6 vs. 5.7 hours; p=0.058) No difference in mortality, norepinephrine duration, vasopressin duration, or ICU/hospital length of stay
Hammond et al. ¹¹ Single-center, retrospective, cohort study N=96	Early addition of vasopressin within 4 hours of septic shock onset vs. norepinephrine monotherapy	 Significantly shorter time to MAP target and hospital length of stay but no difference in ICU length of stay Significantly greater reduction in SOFA score at 72 hours post shock onset No difference in SOFA score at 6, 24, or 72 hours post shock onset No difference in in-hospital or 28-day mortality No difference in norepinephrine duration
Wu et al. ¹² Single-center, retrospective, cohort study N=148	Vasopressin initiation for patients requiring ≥10 mcg/min of norepinephrine vs. patients requiring ≥50 mcg/min of norepinephrine	 No difference in time to MAP target, mortality, or ICU/hospital length of stay

Study rationale

Conflicting evidence and lack of recommendations regarding:

- Optimal candidates for vasopressin
- Optimal timing of vasopressin initiation
- Optimal timing of vasopressin discontinuation

High relative cost of vasopressin compared to other vasopressors prioritizes its optimization

Purpose

To evaluate outcomes for patients with septic shock based on the utilization of vasopressin

Research questions:

- Does the addition of vasopressin to low-dose vasopressors in patients with septic shock reduce in-hospital mortality?
- Does the addition of vasopressin to high-dose vasopressors in patients with septic shock reduce in-hospital mortality?

Design

Design: IRB-exempt, retrospective chart review of patients treated with vasopressors and diagnosed with septic shock

Time frame: January 1, 2018 to September 17, 2018

Setting: Intensive care unit (ICU) at Baptist Hospital of Miami

Sample size: 149 patients

Subject selection

Inclusion criteria

- \geq 18 years old
- "Septic shock" documented in the medical record
- Vasopressor infusion

Exclusion criteria

- Pregnant
- "Cardiogenic shock" documented in the medical record
- Post-cardiothoracic surgery
- <12 hours on vasopressors</p>

Comparator groups

Low-dose vasopressors:

- ≤ 0.2 mcg/kg/minute NE equivalents
- Patients treated with vasopressin
- Patients treated without vasopressin

High-dose vasopressors:

> 0.2 mcg/kg/minute NE equivalents

- Patients treated with vasopressin
- Patients treated without vasopressin

NE-norepinephrine

Study outcomes

Primary outcome:

 In-hospital mortality from any cause or initiation of hospice care

Secondary outcomes:

- Total time on vasopressors (hours)
- Number of catecholamine agents required
- ICU length of stay (days)
- Hospital length of stay (days)

Subject selection

Results: Low-dose arm

Baseline characteristics: Low-dose arm

Characteristics	No vasopressin (n=35)	Vasopressin (n=20)	p-value
Age - years	70.7 <u>+</u> 13.7	63.7 <u>+</u> 18.7	0.12
Male sex – no (%)	23 (65.7)	11 (55)	0.43
APACHE II score	18.1 <u>+</u> 5.8	18.1 <u>+</u> 7.0	1.00
SOFA score	5.1 <u>+</u> 2.2	5.6 <u>+</u> 2.6	0.45
Lactic acid – mg/dL	3.0 <u>+</u> 1.9	3.2 <u>+</u> 2.6	0.74
MAP – mmHg	65.3 <u>+</u> 12.0	63.7 <u>+</u> 8.8	0.60
NE-equivalent dose – mcg/kg/min	10.4 <u>+</u> 5.4	10.6 <u>+</u> 7.8	0.91
All baseline characteristics at time of vasopressor initiation			

All values displayed as mean <u>+</u> standard deviation unless otherwise noted

NE-equivalent dose equation from VASST trial

NE-equivalent = Norepinephrine + Epinephrine + (Dopamine/2) + (Phenylephrine/10)

Outcomes: Low-dose arm

	No vasopressin (n=35)	Vasopressin (n=20)	p-value
In-hospital mortality – no (%)	7 (20.0)	7 (35.0)	0.22

Secondary outcomes	No vasopressin (n=35)	Vasopressin (n=20)	p-value
Mean time on vasopressors - hours	52.6 <u>+</u> 56.3	75.5 <u>+</u> 40.2	0.12
Mean time on vasopressors for patients surviving to discharge - hours	45.3 <u>+</u> 38.4	66.9 <u>+</u> 41.2	0.06
Mean ICU length of stay - days	3.6 <u>+</u> 2.8	10.1 <u>+</u> 9.0	0.0002
Mean hospital length of stay - days	12.8 <u>+</u> 12.5	30.6 <u>+</u> 27.4	0.001
Number of catecholamines at time of inclusion	One agent: 35 (100)	No other agents: 4 (20) One agent: 14 (70) Two agents: 2 (10)	
Maximum number of catecholamines following inclusion	One agent: 34 (97) Two agents: 1 (3)	One agent: 10 (50) Two agents: 9 (45) Three agents: 1 (5)	

Additional data: Low-dose arm

	No vasopressin (n=35)	Vasopressin (n=20)
Steroids administered – no (%)	17 (49)	9 (45)
Midodrine administered – no (%) Average norepinephrine rate of 2.6 mcg/min at initiation	9 (26)	2 (10)
Mean time to vasopressin administration - hours (range)		10.8 (0-45.3)
Mean duration of vasopressin – hours (range)		40.7 (12.3-90.8)

Results: High-dose arm

Baseline characteristics: High-dose arm

Characteristics	No vasopressin (n=46)	Vasopressin (n=48)	p-value
Age - years	75.8 <u>+</u> 10.8	73.2 <u>+</u> 14.2	0.18
Male sex – no (%)	32 (69.6)	27 (56.3)	0.16
APACHE II score	21.2 <u>+</u> 6.0	22.6 <u>+</u> 6.5	0.28
SOFA score	6.0 <u>+</u> 2.3	6.5 <u>+</u> 3.1	0.38
Lactic acid – mg/dL	3.1 <u>+</u> 1.9	4.7 <u>+</u> 4.6	0.03
MAP – mmHg	67.1 <u>+</u> 15.5	66.8 <u>+</u> 15.3	0.93
NE-equivalent dose – mcg/kg/min	42.4 <u>+</u> 49.2	58.2 <u>+</u> 53.3	0.14
All baseline characteristics at time of vasopressor initiation			

All baseline characteristics at time of vasopressor initiation

All values displayed as mean <u>+</u> standard deviation unless otherwise noted

NE-equivalent dose equation from VASST trial

NE-equivalent = Norepinephrine + Epinephrine + (Dopamine/2) + (Phenylephrine/10)

Outcomes: High-dose arm

	No vasopressin (n=46)	Vasopressin (n=48)	p-value
In-hospital mortality – no (%)	20 (43.5)	34 (70.8)	0.007
Secondary outcomes	No vasopressin (n=46)	Vasopressin (n=48)	p-value
Mean time on vasopressors - hours	95.4 <u>+</u> 86.8 Median: 74.2	171.7 <u>+</u> 211.2 Median: 76.5	
Mean time on vasopressors for patients surviving to discharge - hours	81.9 <u>+</u> 71.8 Median: 70.6	141.6 <u>+</u> 142.1 Median: 70.5	
Mean ICU length of stay - days	7.3 <u>+</u> 6.8 Median: 5.0	9.4 <u>+</u> 15.2 Median: 5.0	0.39
Mean hospital length of stay - days	17.5 <u>+</u> 12.0 Median: 14.0	16.1 <u>+</u> 16.6 Median: 12.0	0.64
Number of catecholamines at time of inclusion	One agent: 35 (76) Two agents: 11 (24)	One agent: 35 (73) Two agents: 13 (27)	
Maximum number of catecholamines following inclusion	One agent: 37 (72) Two agents: 13 (28)	One agent: 22 (46) Two agents: 21 (44) Three agents: 4 (8) Four agents: 1 (2)	

Additional data: High-dose arm

	No vasopressin (n=46)	Vasopressin (n=48)
Steroids administered – no (%)	21 (45.7)	25 (52.1)
Midodrine administered – no (%)	20 (43.5)	19 (39.6)
Mean time to vasopressin administration - hours (range)		24.7 (0-177.3)
Mean duration of vasopressin – hours (range)		62.4 (1.8-403)

Limitations

- Higher vasopressin dose utilized than recommended by the Surviving Sepsis Guidelines
- Small sample size in low-dose vasopressor with vasopressin group (n=20)
- Potential for inaccurate charting of vasopressor initiation, rate change, and discontinuation
- Potential for inaccurate reporting of septic shock diagnosis in electronic medical record
- Unknown administration of fluid resuscitation prior to initiation of vasopressors
- Additional causes of mortality not accounted for
- Evaluated in-hospital mortality with unknown extended outcomes

Conclusions

- No in-hospital mortality benefit associated with vasopressin utilization in both the low- and high-dose arms
- No difference in duration of vasopressor therapy associated with vasopressin administration in both the low- and highdose arms
- Opportunity for optimization of vasopressin utilization based on poor associated outcomes

Self-assessment question

- Which of the following is an outcome of the VASST trial?
 - A. 28-day mortality benefit seen with initiation of vasopressin prior to norepinephrine
 - B. Increased 28-day mortality for patients administered vasopressin
 - C. Significantly more days free of organ dysfunction for patients administered vasopressin
 - D. 90-day mortality benefit for patients with less-severe septic shock administered vasopressin

Self-assessment answer

Which of the following is an outcome of the VASST trial?

- A. 28-day mortality benefit seen with initiation of vasopressin prior to norepinephrine
- B. Increased 28-day mortality for patients administered vasopressin
- C. Significantly more days free of organ dysfunction for patients administered vasopressin
- D. 90-day mortality benefit for patients with less-severe septic shock administered vasopressin

References

- 1. Kadri SS, Rhee C, Strich JR, et al. Estimating ten-year trends in septic shock incidence and mortality in the United States Academic Medical Centers using clinical data. *Chest*. 2017;151:278-85.
- 2. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801-10.
- 3. Torio CM, Moore BJ. National Inpatient Hospital Costs: The most expensive conditions by payer, 2013. Rockville MD: Agency for Healthcare Research and Quality. May 2016.
- 4. Landry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. *Circulation*. 1997;95:1122-1125.
- 5. Marsh JD, Margolis TI, Kim D. Mechanism of diminished contractile response to catecholamines during acidosis. *Am J Physiol*. 1988;254(1, pt 2):H20-H27.
- 6. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. *Crit Care Med*. 2017;45:486-552.
- 7. Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. *N Engl J Med*. 2008;358:877-887.
- 8. Gordon AC, Mason AJ, Thirunavukkarasu N, et al; VANISH Investigators. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH ran- domized clinical trial. *JAMA*. 2016;316:509-518.
- 9. Reardon DP, DeGrado JR, Anger KE, Szumita PM. Early vasopressin reduces incidence of new onset arrhythmias. *J Crit Care*. 2014;29:482-485.
- 10. Hammond DA, Ficek OA, Painter JT, et al. Prospective open-label trial of early concomitant vasopressin and nor- epinephrine therapy versus initial norepinephrine monother- apy in septic shock. *Pharmacotherapy*. 2018;38:531-538.
- 11. Hammond DA, Cullen J, Painter JT, et al. Efficacy and safety of the early addition of vasopressin to norepinephrine in septic shock. *J Intensive Care Med*. 2019;34:910-916.
- 12. Wu JY, Stollings JL, Wheeler AP, Semler MW, Rice TW. Efficacy and outcomes after vasopressin guideline implemen- tation in septic shock. *Ann Pharmacother*. 2017;51:13-20.
- 13. Gordon AC, Mason AJ, Perkins GD, et al. The interaction of vasopressin and corticosteroids in septic shock. *Critical Care Medicine*. 2014;42:1325-1333.
- 14. Der-Nigoghossian C, Hammond DA, Ammar MA. Narrative review of controversies involving vasopressin use in septic shock and practical considerations. Ann Pharmacother. 2020;0:1-9.

Acknowledgements

- Heidi Clarke, PharmD, BCCCP
- Jonathan Kline, PharmD, BCCCP
- Payal Patel, PharmD, BCCCP

Evaluating the association between vasopressin use and in-hospital mortality in patients with septic shock

Michael Pasqualicchio, PharmD, BCPS PGY-2 Critical Care Pharmacy Resident Baptist Hospital of Miami Michaelpa@baptisthealth.net