Optimal Early Clinical Endpoints for Long-Term Functional Outcome Prediction After Thrombectomy

Felipe De Los Rios La Rosa
Baptist Hospital of Miami, Miami Neuroscience Institute, felipedl@baptisthealth.net

Amy Starosciak
Baptist Health South Florida, amyst@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications

Citation
https://scholarlycommons.baptisthealth.net/se-all-publications/3451

This Conference Poster – Open Access is brought to you for free and open access by Scholarly Commons @ Baptist Health South Florida. It has been accepted for inclusion in All Publications by an authorized administrator of Scholarly Commons @ Baptist Health South Florida. For more information, please contact Carrief@baptisthealth.net.
Optimal Early Clinical Endpoints for Long-Term Functional Outcome Prediction After Thrombectomy

Eva Mistry, MBBS; Tapan Mehta, MBBS; Niraj Arora, MBBS; Felipe De Los Rios La Rosa, MD; Amy K. Starosciak, PhD; James E. Siegler, III, MD; Katarina Dakay, DO; Rohan Chitale, MD; Shadi Yaghi, MD; Pooja Khatri, MD MS

Vanderbilt University Medical Center, Nashville, TN; Medical Univ of South Carolina, Charleston, SC; Univ of Minnesota Med Ctr, Minneapolis, MN; Jackson Memorial Hosp, Miami, FL; Baptist Health Neuroscience Ctr, Miami, FL; Hosp of the Univ of Pennsylvania, Philadelphia, PA; Brown Univ, Providence, RI; NYU Langone Health, Brooklyn, NY; Univ of Cincinnati, Cincinnati, OH

Introduction

Early neurological recovery (ENR) is an attractive surrogate marker for long-term functional outcome of endovascularly-treated stroke patients.

The optimal definition of 24-hour ENR that best predicts 90-day functional independence (modified Rankin Scale, mRS 0-2) has not been established. We sought to determine ENR measure that best predicted 90-day mRS 0-2 in our prospective, multi-center, “Blood Pressure after Endovascular Stroke Therapy (BEST)” study.

Methods and Materials

BEST enrolled consecutive EVT-treated adult patients with ICA, M1, or M2 occlusions at 12 comprehensive stroke centers from 11/2017 to 9/2018. In this post-hoc analysis, we measured the ability of various thresholds of both 24-hour NIHSS and ΔNIHSS (baseline minus 24-hour) to predict 90-day mRS 0-2 using Youden’s index.

The strength of the associations were assessed using logistic regression adjusted for age, glucose, hypertension, ASPECT score, time to recanalization, recanalization status, and thrombolytic treatment.

Results

Of 485 patients in the BEST cohort, 447 with 90-day follow-up were included in this study (228 females, mean age 68 ±15 years).

The optimal Youden’s Index was achieved at 24 hour NIHSS of ≤7 (sensitivity 80.1%, specificity 80.4%, area under the curve [AUC] 0.855 [0.819-0.887], p<0.001).

Conclusions

A 24-hour NIHSS ≤7 best predicted functional independence at 90 days. Among ΔNIHSS thresholds, ≥4 points (decrease) was optimal.

These findings should be validated in independent endovascular cohorts to establish a standard short-term outcome measure for both clinical and research scenarios.

Figure. Receiver Operating Characteristics of 24 hour NIHSS (A), delta NIHSS (B), and the differences between the two (C) at predicting 90 day modified Rankin Score 0-2

Table. Association of Various thresholds of 24-hour NIHSS and ΔNIHSS with 90-day Modified Rankin Scale 0-2

<table>
<thead>
<tr>
<th>Definitions</th>
<th>Unadjusted OR</th>
<th>p-value</th>
<th>Adjusted OR</th>
<th>p-value</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-hour NIHSS as continuous</td>
<td>1.27 [1.22-1.33]</td>
<td><0.001</td>
<td>1.26 [1.20-1.33]</td>
<td><0.001</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>24-hour NIHSS ≤2</td>
<td>12.5 [7.14-25]</td>
<td><0.001</td>
<td>7.69 [4.16-16.67]</td>
<td><0.001</td>
<td>43.55%</td>
<td>94.23%</td>
</tr>
<tr>
<td>24-hour NIHSS ≤7</td>
<td>16.67 [10-25]</td>
<td><0.001</td>
<td>12.5 [7.14-20]</td>
<td><0.001</td>
<td>80.1%</td>
<td>80.4%</td>
</tr>
<tr>
<td>ΔNIHSS as continuous</td>
<td>1.11 [1.07-1.13]</td>
<td><0.001</td>
<td>1.11 [1.07-1.14]</td>
<td><0.001</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ΔNIHSS ≥2</td>
<td>6.67 [4.16-11.1]</td>
<td><0.001</td>
<td>10 [5.26-20]</td>
<td><0.001</td>
<td>88.7%</td>
<td>46.5%</td>
</tr>
<tr>
<td>ΔNIHSS ≥4</td>
<td>5.27 [3.44-8.33]</td>
<td><0.001</td>
<td>4.55 [2.85-7.69]</td>
<td><0.001</td>
<td>79%</td>
<td>58.5%</td>
</tr>
<tr>
<td>ΔNIHSS ≥8</td>
<td>3.72 [2.5-5.56]</td>
<td><0.001</td>
<td>3.32 [2.12-5.26]</td>
<td><0.001</td>
<td>53.2%</td>
<td>76.5%</td>
</tr>
</tbody>
</table>

Contact

Eva Mistry, MBBS
Assistant Professor
Department of Neurology
Vanderbilt University Medical Center
Email: eva.a.mistry@vumc.org

Contact Information

© VUHITS Template by CHAOZHUANG. 1.0.7.2018. WWW.CHAOZHUANG.COM