Fulfilling the Promises of Health Information Technology: Are Metrics Measuring Our Delivered Care?

Chintan Bhatt
Baptist Health South Florida, ChintanB@baptisthealth.net

Donna Lee Armaignac
Baptist Health South Florida, DonnaAr@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications

Citation

https://scholarlycommons.baptisthealth.net/se-all-publications/3289

This Article -- Open Access is brought to you for free and open access by Scholarly Commons @ Baptist Health South Florida. It has been accepted for inclusion in All Publications by an authorized administrator of Scholarly Commons @ Baptist Health South Florida. For more information, please contact Carrief@baptisthealth.net.
Background

- In the U.S., about 55,000 critically ill patients are cared for each day.
- Hospital stays that involved ICU services are 2.5 times more costly than other hospital stays.
- Between 2000 and 2005, annual critical care medicine costs increased from $56.6 billion to $81.7 billion, representing 13.4% of hospital costs, 4.1% of national health expenditures, and 0.66% of gross domestic product.
- Cost savings of up to $1 billion per quality life year gained can be attained with critical care management of severe sepsis, acute respiratory failure, and general critical care interventions.

Objectives

- Assess if quality metrics and measures accurately reflect the clinical care provided in the ICU.
- Examine if publicly reported outcomes (metrics & measures) reflect the quality of care provided in the ICU.

Predictive Scoring Systems

- Scores are measures of disease severity to predict likelihood of outcomes (e.g., APACHE-IV, MPM-III, SAPS3).
- Valuable for standardizing research and quality comparisons.

Utilization of Predictive Scoring Systems

- Standardizing, stratifying and comparing severity adjustment.
- Provide no assistance for patient management.
- Validation – external.
- Calibration – predictive agreement O/E over time.
- Customization – across a population (region, size, type, performance quartile) – need similar baseline risk.
- Discrimination – accuracy (alive or dead).
- Compare ourselves to others – good internal validity.

Table 1. Advantages and Disadvantages of Common Predictive Scoring Systems

<table>
<thead>
<tr>
<th>Scoring system</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| APACHE-IV | • Coefficients regularly updated-
• Provides algorithms for LOS prediction
• Specific algorithm to predict mortality in CABB surgery patients
• Less prone to be affected by the case-mix | • Developmental sample restricted to one country
• More complex data collection
• High abstraction burden
• Proprietary scoring system |
| MPMo-III | • Low abstraction burden
• Less prone to inter-observer variability
• By using less physiologic data, may be preferred when laboratory resources are constrained | • Developmental sample mostly restricted to one country
• More susceptible to case-mix effects |
| SAPS 3 | • Lowest abstraction burden
• Less prone to inter-observer variability
• Customized equations to predict hospital mortality according to seven different geographic regions
• Potential use for international benchmarking | • Does not provide estimation for LOS
• Some regional equations were developed using relatively low sample size |

Publicly Reported Metrics

Conclusions

“*What gets measured gets managed.*”

- Measurement combined with public reporting metrics can draw attention to particular areas of concern and stimulate improvement efforts.
- Metrics are simplistic approximations of what clinicians and patients believe represents high quality of care.
- Quality measurement enterprise operates separately from the workflows associated with delivering health care services.

References