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Abstract

Purpose: We propose and simulate a model-based methodology to incorporate

heterogeneous treatment benefit of proton therapy (PrT) versus photon therapy into

randomized trial designs. We use radiation-induced pneumonitis (RP) as an exemplar.

The aim is to obtain an unbiased estimate of how predicted difference in normal tissue

complications probability (DNTCP) converts into clinical outcome on the patient level.

Materials and Methods: DNTCP data from in silico treatment plans for photon therapy

and PrT for patients with locally advanced lung cancer as well as randomly sampled

clinical risk factors were included in simulations of trial outcomes. The model used at

point of analysis of the trials was an iQUANTEC model. Trial outcomes were examined

with Cox proportional hazards models, both in case of a correctly specified model and in

a scenario where there is discrepancy between the dose metric used for DNTCP and the

dose metric associated with the ‘‘true’’ clinical outcome, that is, when the model is

misspecified. We investigated how outcomes from such a randomized trial may feed into

a model-based estimate of the patient-level benefit from PrT, by creating patient-specific

predicted benefit probability distributions.

Results: Simulated trials showed benefit in accordance with that expected when the

NTCP model was equal to the model for simulating outcome. When the model was

misspecified, the benefit changed and we observed a reversal when the driver of

outcome was high-dose dependent while the NTCP model was mean-dose dependent.

By converting trial results into probability distributions, we demonstrated large

heterogeneity in predicted benefit, and provided a randomized measure of the precision

of individual benefit estimates.

Conclusions: The design allows for quantifying the benefit of PrT referral, based on the

combination of NTCP models, clinical risk factors, and traditional randomization. A

misspecified model can be detected through a lower-than-expected hazard ratio per

predicted DNTCP.
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Introduction
Radiation oncology has—as have many other technology-driven medical disciplines—struggled to generate level I evidence

demonstrating the clinical benefits of technologic advances. This is also the case for proton therapy [1], where the superiority

over standard photon therapy remains controversial [2–4], even for widely accepted treatments such as pediatric malignancies

[5–7]. It has been suggested that purely relying on evidence created from randomized controlled trials (RCTs) may not be the

optimal way of identifying patients (or patient groups) likely to benefit from proton therapy [8–11]. An alternative methodology

for development of data-based treatment strategies involves prediction of individual patient benefit using normal tissue

complication probability (NTCP) models [8]. The health care payers in some European countries have accepted NTCP model

predictions as a basis for reimbursement of the cost of proton therapy [8, 12]. Still, selection of patients, based on outcome

prediction models, suffers from risk of bias or inaccurate results if the underlying model lacks in accuracy or generalizability.

From an evidence-based medicine perspective, proton and photon therapies should be compared in RCTs, as would be

required for any novel drug, except in indications where the benefit is deemed to be so large that randomization as a method

for avoiding bias may not be necessary [13, 14]. At the time of writing, a number of clinical trials of proton therapy are indeed in

progress in a wide range of indications [15]. The challenge of this approach is that simple head-to-head comparison ignores

the expected heterogeneity of treatment effect: Some patients may expect large benefits from proton therapy in terms of

toxicity reduction, while others may have relatively little to gain (or might even be disadvantaged). Or to put it differently: an

RCT of proton versus photon therapy may provide a methodologically correct answer to the wrong question—whether protons

are uniformly better than photons in a defined population of patients—while missing out on the more relevant question—who, if

any, among the patients will have a clinically meaningful benefit from proton therapy compared with photon therapy.

Here, we propose and simulate an approach where the heterogeneous treatment benefit of proton therapy predicted by a

model is incorporated into the trial design. This idea also extends into the recurrent discussions regarding personalized

medicine [16], where technology-driven improvements have the potential to play a major role. We show how such a

randomized trial may provide a randomized estimate of the patient-level benefit from proton therapy, using comparative dose

planning and taking clinical risk factors for toxicity into account.

As a proof-of-concept, we demonstrate the design and interpretation of a hypothetical trial of definitive radiation therapy for

locally advanced non–small cell lung cancer (NSCLC), with radiation-induced pneumonitis (RP) as the primary endpoint. The

model used at point of analysis of the trials is an individualized QUANTEC (iQUANTEC) model taking clinical risk factors into

account [17, 18].

Materials and Methods

Dose Planning

Twenty consecutive patients with locally advanced NSCLC treated with definitive radiation therapy and concomitant

chemotherapy at our center, from January 1, 2015, and onwards, were selected as dose-planning cases, to provide realistic

estimates of interpatient heterogeneity in dose metric differences. This retrospective study was approved by the Danish Health

Authority, approval No. 3-3013-817/1, in accordance with Danish law. All patients were treated in free breathing with

volumetric modulated arc therapy. Robust proton dose plans were generated, and clinical photon plans and generated proton

dose plans fulfilled clinical constraints. See Supplementary Materials for additional information on patient data, dose planning,

and clinical constraints.

Dose-Volume Histogram Data

For each dose plan (photon and proton) the mean lung dose (MLD) and the volumes receiving at least 10 Gy, 20 Gy, 30 Gy, 40

Gy, and 60 Gy (V10Gy, V20Gy, V30Gy, V40Gy, and V60Gy) were retrieved for the lungs (total lung minus gross tumor volume).

Mean heart dose and V35Gy to esophagus were also retrieved. Data were retrieved with Eclipse Scripting API (version 13.6)

using in-house developed software (Visual Studio Community Edition 2015).

We considered the setting of a randomized trial of proton versus photon therapy for locally advanced NSCLC, with rate of

symptomatic RP as primary endpoint and with a 1:1 allocation ratio to the 2 trial arms and 300 patients per arm. Figure 1

shows the overall simulation setup.

We assumed the risk of RP could be predicted by the dose plan MLD and calculated an individual patient risk factor,

NTCPsum, for RP, using an individualized QUANTEC model (iQUANTEC) [18]. This model uses the dose-response
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relationship for symptomatic RP found in the QUANTEC review [19], but integrates additional clinical risk factors identified in a

literature-based meta-analysis and their associated odds ratios (ORs) [20] (see Figure 2). We assumed a logistic dose-

response relationship and estimated the OR for RP compared to a reference (see below) for a patient with a specific MLD and

a set of clinical risk factors X1, X2..., as

OR ¼ e4 c50
D50MLDOR1OR2 . . . ORð...Þ:ð1Þ

A summarized individual patient risk was estimated by using the logarithm of the OR, NTCPsum ¼ ln(OR), as this is additive

in changes in risk factors.

We simulated outcomes by using a Weibull hazard function, h(t), parameterized by the shape and scale parameters q and

k:

hðtÞ ¼ kqtq�1:ð2Þ

Individual changes in the estimated risk of event (RP) were modeled by adjusting the scale parameter

krisk ¼ kexp(NTCPsum) ¼ kOR. Further, we required a patient with baseline clinical risk factors and average MLD with photon

therapy (17.0 Gy) to have a probability of freedom from RP at 2 years of 85%, which in turn defines q ¼ 0.6 and k ¼ 0.11.

Finally, we assumed follow-up evenly distributed over a 2-year period.

For simulation of trial outcomes, we used bootstrap resampling from the 20 patients with dual planning. For each sample,

we used the photon dose plan MLD for risk estimation based on dose and randomly sampled clinical risk factors as identified

by Vogelius and Bentzen [20], with prevalences as summarized in the study of Appelt et al [18]: preexisting pulmonary

comorbidity, OR 2.27, prevalence 0.26; mid or inferior tumor location, OR 1.87, prevalence 0.44; current smoker, OR 0.62,

prevalence 0.28; age .63 years, OR 1.66, prevalence 0.50.

To include the effect of the experimental treatment (proton therapy), we calculated the individual change in risk (ie, DNTCP)

resulting only from the reduction in NTCP by using the difference in MLD between photon and proton therapy. We randomly

selected patients for the experimental arm and adjusted their individual risk factor according to: NTCPsum.proton ¼
NTCPsum.photon þ DNTCP. Event times were simulated by sampling from the corresponding Weibull distribution (ie, with krisk,

Figure 1. Schematics of the trial simulation setup. Twenty patients

with dual planning provided a distribution of dose plans. These dose

plans were input into a simulation model, which used either the

iQUANTEC/QUANTEC model based on mean lung dose or a VXX

model to simulate a baseline risk of toxicity corresponding to a given

dose distribution. These data were forwarded to a simulation stage,

where the dose plans were sampled with replacement for up to 2

3 300 simulated trial patients. Each patient also had a randomly

generated set of clinical risk factors (smoking, pulmonary

comorbidity, and age), and the combination of the radiation dose and

clinical risk factors could then be used to generate a patient-specific

Weibull distribution of event probability versus follow-up time.

Simulated binary survival data were generated from the

corresponding probabilities. The result was a 2 3 300 patient data

structure simulating clinical outcomes in a trial. This ‘‘in silico trial

dataset’’ was analyzed according to our suggested strategy: using

the complication probability of an individualized QUANTEC NTCP

model as a covariate in a Cox model (see figure for the exact

expression used in the model). Abbreviations: HR, hazard ratio; MLD,

mean lung dose; NTCP, normal tissue complication probability.
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based on either NTCPsum.proton or NTCPsum.photon, as appropriate), and censoring times were randomly sampled from a

uniform distribution over the interval of 0 to 2 years.

Once the simulated trial dataset was created, we used the Cox proportional hazards model to analyze the data. The DNTCP

and NTCPsum.photons were always included as covariates in the Cox model (Figure 1).

Model Misspecification

Model misspecification refers to the scenario where the user is making NTCP and DNTCP estimates (eg, in the model-based

selection process) based on a certain parametrization (eg, MLD), but where the driver of toxicity is another metric (eg, lung

V40Gy).

To study the effect of model misspecification, we changed the dose-volume model used in the simulation of outcome data

while keeping the analysis of trial data the same. The assumed alternative driver dose-response models were based on dose

cutoffs (VXX-driven models) and were taken from literature data [21]. These models did not account for clinical risk factors and

were not modified further. Fitting a logistic model to the data set provided estimates of c50 and D50 (See Supplementary

Materials). As Willner et al [21] only included predictive parameters up to V40Gy, the data were extrapolated to V60Gy in order to

test a dose metric that correlated differently with MLD in the photon and proton plans (Figure 3). Supplementary Materials

tabulate c50 and D50 estimates for the different models; see Figure 2 for graphical versions of all models.

For both the main analysis (Trial Simulation) and the model misspecification we simulated 1000 trials each with 2 3 300

patients and report the resulting estimate of the logarithm of the hazard ratio [log(HR)] per DNTCP from the Cox model.

Log(HR) per DNTCP is calculated by assuming the QUANTEC model for MLD (receiver model) regardless of which model was

used to drive the simulated trial outcomes. To assess the effect of uncertainty associated with delivery of proton therapy on the

trial outcome, we also included a worst-case proton plan MLD, selected from the uncertainty calculations performed during the

planning process (using uncertainties of 0.5-cm isocenter shift and 3.5% calibration curve error). The worst-case proton plan

was defined as the uncertainty plan with the highest MLD and was used as alternative driver dose-response models.

Application of Trial Results in Selecting Patients for Referral

Finally, we wanted to illustrate how the outcome of a trial could be used to support clinical decisions for future patients. The

most frequent log(HR) per DNTCP, from 1000 simulations with a correctly specified model, was used for illustration. The trial

yielded a log(HR) per DNTCP (based on a randomized comparison) for protons versus photons and we converted this result

into an estimate of the expected benefit in 4 illustrative cases: the patient with the highest DMLD and a patient with

approximately median DMLD, in both cases assuming no clinical risk factors or all clinical risk factors present (note that

‘‘current smoker’’ has a protective effect, ie, OR , 1). The effect size estimate of the Cox proportional hazards model could be

Figure 2. MLD dose-risk

models (left) from Marks et al

[19] and Appelt et al [18].

Alternative dose-risk models

(right) for the dose-volume

histogram parameters used in

simulation of outcomes (first

dark grey box in Figure 1) from

Willner et al [21]. Abbreviation:

MLD, mean lung dose.
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used to provide a probability distribution of absolute benefit from proton therapy at the individual patient level, using the basic

properties of the Cox model: NTCPsum:protons ¼ NTCPsum:photons
HR, where HR¼ exp(b*DNTCP) and b [¼log(HR)] were assumed

normally distributed according to the confidence interval of the simulated trial. This approach naturally combines the model

prediction (NTCP) and the result of randomization, as log(HR) is an estimate with DNTCP as covariable in strict randomization.

All simulations and analysis of outcome data were performed in RStudio (RStudio: Integrated Development for R, RStudio

Team [2015], RStudio Inc, Boston, Massachusetts).

Results

Dose Plan Comparison

The mean DMLD was 4.3 Gy when comparing the robust planned proton dose plans with the clinical photon dose plans

(Figure 3). The proton dose plans had a lower MLD and a lower V20Gy for all patients. However, V40Gy and V60Gy were higher

with protons in an increasing proportion of cases. Evaluating the worst-case proton plans, the mean DMLD was 3.2 Gy.

Trial Simulation

The simulated trials favored proton therapy when an input MLD-based model was used (correctly specified model), and

progressively decreased the predicted benefit of protons when the input model was changed from V10Gy towards V60Gy

(Figure 4). Assuming the worst-case MLD (MLD-robustness in Figure 4) from the proton uncertainty plans had a limited effect

on the trial outcome.

Figure 3. Dosimetric

comparison of the 20 patients’

photon (x-axis) and proton (y-

axis) doses to the lung

structure (lungs minus gross

tumor volume). The identity

line indicates where the 2

modalities yielded same

results, and points below the

identity line indicate superiority

of protons as compared to

photons and vice versa. Note

the different scales on both the

x- and y-axis.
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Use in Future Patients

We finally assumed the completion of a trial with a resulting estimate of the value of log(HR) for DNTCP. If the model was well

specified, the most frequent trial result was used: log(HR) per DNTCP ¼�7.77 (95% confidence limit: �16.6 to 1.05). This

result was converted into probability distributions of predicted benefit, shown for 4 illustrative cases in Figure 5, detailing how a

patient with all risk factors in combination with a large DMLD reduction, comparing photons to protons, will have a reduced

probability of developing RP, namely, from 49% to 9%. Additionally, a patient with the same number of risk factors, but median

DMLD between the 2 modalities, will only have a 31% to 15% probability reduction.

Discussion
Our trial simulation incorporates heterogeneity of treatment effect and quantified risk at the individual patient level into a

randomized comparison of 2 treatment strategies. The aim is to obtain an unbiased estimation of how a difference in model-

predicted DNTCP converts into a clinical outcome on the patient level.

Figure 5 shows how outcomes from randomized trial results can be used to quantify the individual benefits of proton versus

photon therapy and thereby support the decision to refer to proton therapy on a rational basis. This allows moving from simple

Figure 4. Simulations of 1000

trials for each volumetric

parameter, according to the

scheme in Figure 1 for 2

3 300 patients. In the top set,

the model is correctly specified

(MLD used for simulating

outcome and MLD used in Cox

regression analysis of results).

On the x-axis is log(HR) per

DNTCP of the Cox proportional

hazards model. As expected,

when the MLD model is used

to generate data, the

outcomes favor the model-

predicted DNTCP

[log(HR) , 0]. When the

model is misspecified, the

outcome favors protons even

more for V10Gy as the

underlying model, and

progressively moves towards

favoring photons for the V60Gy

model as input (ie, HR per

DNTCP favors the plan with

highest NTCP in the model).

Comparing with Figure 3, this

illustrates that the trials will

reject a benefit of treating with

protons if V60Gy is the

underlying driver of RP, as

desired. *MLDþrobustness

assumes the worst MLD taken

from proton uncertainty plans,

using uncertainties of 0.5-cm

isocenter shift and 3.5%

calibration curve error.

Abbreviations: DVH, dose-

volume histogram; HR, hazard

ratio; MLD, mean lung dose;

NTCP, normal tissue

complication probability; RP,

radiation-induced pneumonitis.

Scherman et al. (2019), Int J Particle Ther 29

NTCP-based design for randomized trials



hypothesis testing in a comparative effectiveness trial towards individualized estimates of benefit. Arguably, the cases

presented in Figure 5 reflect subjective decisions already made by treating physicians, but the estimate of the HR per DNTCP

quantifies the relative merits of the 2 radiation modalities and provides decision support for patients, caregivers, and policy

makers. A supportive decision-making tool based on the data from this article has been developed in RStudio and is available

online at: https://protontrialsimulation.shinyapps.io/trial_webb/.

The trial design presented here still requires strict randomization. A possible elaboration on the present approach could be

to use adaptive Bayesian designs. In such a design patients with a large predicted benefit are randomly assigned with higher

weighting to proton therapy and when a predefined limit on the magnitude of benefit is exceeded, the patient can be allocated

to the according arm without randomization at all.

A major strength of the presented design is that future selection of patients does not rely on the model being correctly

specified. The estimate of HR per DNTCP adjusts the predicted benefit to the actual clinical data and thus reduces the risk of

wrongly allocating future patients to protons if, for example, the V60Gy model would be a better predictor of NTCP. In other

words, where the model-based approach relies on nonrandomized follow-up studies after implementation to identify model

misspecification, the current proposal detects model misspecification from randomized data through the HR per DNTCP from a

trial. Another strength of the design is that an uncertainty in the MLD did not affect the trial outcome (Figure 4).

It should be acknowledged that it is not ideal only to consider NTCP of a single endpoint in benefit estimations. Here we

focused on a single endpoint for simplicity, but further studies should look at several NTCP endpoints, preferably at a more

comprehensive NTCP profile as pointed out by others [11], but also include verification that the tumor control probability is not

affected by choice of modality.

Figure 5. Application of

hypothetical trial outcome for a

future patient. Top row: A

patient with photon MLD

¼ 18.9 Gy and proton MLD

¼ 11.0 Gy (highest DMLD

among the 20 patients). Top

left shows the case where this

patient has all risk factors (ie, a

patient with preexisting

pulmonary comorbidity, mid or

inferior tumor location, old age,

and not a current smoker)

present (50% chance of

improving NTCP from 48.6%

to less than 9.2%); and top

right shows the case where no

risk factors (no comorbidities,

upper tumor location, young

age, and current smoker) are

present (50% chance of

improving from 5.0% to 3.9%).

Bottom row: A patient with

photon MLD ¼ 13.6 Gy and

proton MLD ¼ 9.5 Gy (median

DMLD among the 20 patients).

Bottom left shows the case

where this patient has all risk

factors present and bottom

right shows the case where no

risk factors are present.

Abbreviations: MLD, mean

lung dose; NTCP, normal

tissue complication probability;

Proton exp, proton

experimental arm.
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To illustrate this point in the lung cancer radiation therapy setting, we considered acute esophagitis and heart complications,

both of which are of high relevance. We provide NTCP estimates for acute esophagus [22] and heart toxicity [23] in the

Supplementary Materials. A reduction in NTCP for the heart when using protons compared to photons was observed, but we

did not see a reduction in the risk of acute esophagitis (Supplementary Materials).

Evaluating only a reduction in MLD, the expected difference in RP in an RCT should favor intensity-modulated proton

therapy. A recent study from MD Anderson Cancer Center (Houston, Texas) on an RCT comparing modulated photon therapy

and passive scattering proton therapy in lung cancer [4] indicated that there was no difference in either MLD or RP rates

between the 2 arms. However, the authors noted a difference in RP between early and late inclusion in the proton group, with

no difference in MLD. The fact that the late proton group had both a significant smaller tumor volume and lower delivered dose

might explain the lower RP rate. This suggests that higher prescribed doses further elucidate the risk of a higher-than expected

dose metric from the lung and might itself be associated with the probability of RP induction when using proton therapy.

Conclusion
Our proposed trial design quantifies the benefit of referral to proton therapy, based on the combination of NTCP models and

traditional randomization. The proposed method behaves well under the investigated types of NTCP model misspecification

and provides quantitative benefit estimates on the individual patient level, which may have greater clinical utility than the

information derived from a traditionally designed RCT.
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