Effect of FAST-ED Implementation and Age on Distance Patients Travel from Scene to Comprehensive Stroke Center

Amy Starosciak
Baptist Health South Florida, amyst@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications

Citation
Starosciak, Amy, "Effect of FAST-ED Implementation and Age on Distance Patients Travel from Scene to Comprehensive Stroke Center" (2018). All Publications. 2816.
https://scholarlycommons.baptisthealth.net/se-all-publications/2816
Effect of FAST-ED Implementation and Age on Distance Patients Travel from Scene to Comprehensive Stroke Center

Amy K. Starosciak, Ph.D.
Neuroscience Clinical Research Supervisor
Baptist Health Neuroscience Center and Center for Research
June 15, 2018
Introduction

• Almost 800,000 people in US have a stroke each year
• 5th leading cause of death in US
• A leading cause of long-term disability
• 87% are ischemic

Source: CDC, 2015
Large Vessel Occlusions

- Clot in the internal carotid, middle cerebral, basilar arteries
- 33% of ischemic strokes
- Responsible for 60% of dependency and 90% of mortality in ischemic stroke

Malhotra, et al., *Front Neurol*, 2017

National Stroke Association
Mechanical Reperfusion (MR)

FIGURE 3. Three sizes of the Penumbra MAX system of aspiration catheters with separator devices. Reproduced with permission.

Serrone JC, et al., Neurosurgery, 2013
Field Assessment Stroke Triage for Emergency Destination

A Simple and Accurate Prehospital Scale to Detect Large Vessel Occlusion Strokes

Fabricio O. Lima, MD, MPH, PhD; Gisele S. Silva, MD, MPH, PhD; Karen L. Furie, MD, MPH; Michael R. Frankel, MD; Michael H. Lev, MD; Érica C.S. Camargo, MD, PhD, MSc; Diogo C. Haussen, MD; Aneesh B. Singhal, MD; Walter J. Koroshetz, MD; Wade S. Smith, MD; Raul G. Nogueira, MD

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm Weakness</td>
<td></td>
<td>Denial/Neglect</td>
<td></td>
</tr>
<tr>
<td>No drift</td>
<td>0</td>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Drift or some effort</td>
<td>1</td>
<td>Extinction to bilateral simultaneous</td>
<td>1</td>
</tr>
<tr>
<td>against gravity</td>
<td></td>
<td>stimulation in one sensory modality</td>
<td></td>
</tr>
<tr>
<td>No effort against</td>
<td>2</td>
<td>Does not recognize own hand or orients</td>
<td>2</td>
</tr>
<tr>
<td>gravity or no movement</td>
<td></td>
<td>only to one side of the body</td>
<td></td>
</tr>
<tr>
<td>Speech Changes</td>
<td></td>
<td>Eye Deviation</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Mild to moderate</td>
<td>1</td>
<td>Partial</td>
<td>1</td>
</tr>
<tr>
<td>Severe global aphasia</td>
<td>2</td>
<td>Forced deviation</td>
<td>2</td>
</tr>
<tr>
<td>or mute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facial Palsy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal or minor</td>
<td>0</td>
<td>Partial or complete paralysis</td>
<td>1</td>
</tr>
<tr>
<td>paralysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FAST-ED

Figure 2. Proportion of patients with large vessel occlusion strokes according to the Field Assessment Stroke Triage for Emergency Destination (FAST-ED) scale. Hosmer and Lemeshow test: 0.62.
FAST-ED

• FAST-ED score 1-3
 – Transport to closest primary or comprehensive center

• FAST-ED score ≥ 4
 – Transport to closest comprehensive center

• FAST-ED score ≥ 6, off-hours
 – Comprehensive Stroke Center will activate the Cath Lab and Stroke Team upon notification

Baptist Health
Neuroscience Center
BAPTIST HEALTH SOUTH FLORIDA
To determine whether use of the FAST-ED increased the distance patients traveled to our medical facility.
Methods

• 1153 cases brought to Baptist Hospital by EMS were analyzed from March 2016 to February 2018
Methods

• Miles traveled from scene to our CSC was obtained from EMS incident reports
• Data also were broken down by age
 – <80 vs. ≥80 years
Methods

• Descriptive statistics
 – Initial characteristics
 – Hospital treatment
 – Discharge disposition

• Two factor Analysis of Variance (ANOVA)
 – Age (<80 vs. ≥80 years) and time (before vs. after FAST-ED implementation)
ANOVA Groups

Time Period

Age Group

Before, <80 y.o.

After, <80 y.o.

Before, ≥80 y.o.

After, ≥80 y.o.
ANOVA Groups

Time Period

Before, <80 y.o.

After, <80 y.o.

Before, ≥80 y.o.

After, ≥80 y.o.
ANOVA Groups

Time Period

Age Group

Before, <80 y.o.

Before, ≥80 y.o.

After, <80 y.o.

After, ≥80 y.o.
ANOVA Groups

Time Period

Age Group

Before, <80 y.o.

After, <80 y.o.

Before, ≥80 y.o.

After, ≥80 y.o.
Results
Initial Patient Characteristics

<table>
<thead>
<tr>
<th>Initial Characteristics</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>74</td>
<td>15</td>
</tr>
<tr>
<td>Stroke Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic</td>
<td>575</td>
<td>50</td>
</tr>
<tr>
<td>Transient Ischemic Attack</td>
<td>89</td>
<td>8</td>
</tr>
<tr>
<td>Intracerebral hemorrhage</td>
<td>78</td>
<td>7</td>
</tr>
<tr>
<td>Subarachnoid hemorrhage</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Stroke Mimic</td>
<td>389</td>
<td>34</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>620</td>
<td>54</td>
</tr>
<tr>
<td>Male</td>
<td>528</td>
<td>46</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Hispanic</td>
<td>667</td>
<td>58</td>
</tr>
<tr>
<td>White Non-Hispanic</td>
<td>231</td>
<td>20</td>
</tr>
<tr>
<td>Black Non-Hispanic</td>
<td>178</td>
<td>15</td>
</tr>
<tr>
<td>Other</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>Black Hispanic</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Asian</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Unknown</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>
Hospital Treatment

<table>
<thead>
<tr>
<th>Hospital Treatment</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV t-PA only</td>
<td>111</td>
<td>10</td>
</tr>
<tr>
<td>IA t-PA or MR only</td>
<td>65</td>
<td>6</td>
</tr>
<tr>
<td>IV t-PA & IA/MR</td>
<td>58</td>
<td>5</td>
</tr>
</tbody>
</table>

Turnaround Times

<table>
<thead>
<tr>
<th>Turnaround Times</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door to Needle (IV t-PA)</td>
<td>33</td>
<td>2-96</td>
</tr>
<tr>
<td>Door to Groin (IA/MR)</td>
<td>85</td>
<td>34-239</td>
</tr>
<tr>
<td>TICI score 2B-3</td>
<td>109</td>
<td>88</td>
</tr>
</tbody>
</table>
Hospital Treatment

Door To Needle

Door To Groin

Time (min)

Before FAST-ED
After FAST-ED

Before FAST-ED
After FAST-ED
ANOVA Groups

Time Period

Age Group

Before, <80 y.o.
After, <80 y.o.

Before, ≥80 y.o.
After, ≥80 y.o.
Effect of Age on Distance Traveled

Main Effect for Age: $F(1,907) = 20.82, p < 0.001$
ANOVA Groups

Time Period

Age Group

Before, <80 y.o.

After, <80 y.o.

Before, ≥80 y.o.

After, ≥80 y.o.
Effect of FAST-ED Implementation on Distance Traveled

Before FAST-ED: 9.0 miles
After FAST-ED: 8.8 miles

NO Main Effect for Time: F(1,907) = 0.52, n.s.
ANOVA Groups

Time Period

Age Group

Before, <80 y.o.

After, <80 y.o.

Before, ≥80 y.o.

After, ≥80 y.o.
Effect of FAST-ED and Age on Distance Traveled

NO Age x Time Interaction: $F(1,907) = 0.11$, n.s.
Effect of FAST-ED Score on Distance Traveled
Discharge Disposition

<table>
<thead>
<tr>
<th></th>
<th>Before FAST-ED</th>
<th>After FAST-ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>312 (56%)</td>
<td>255 (43%)</td>
</tr>
<tr>
<td>Rehab</td>
<td>72 (13%)</td>
<td>58 (13%)</td>
</tr>
<tr>
<td>SNF</td>
<td>64 (12%)</td>
<td>77 (17%)</td>
</tr>
<tr>
<td>Hospice</td>
<td>33 (6%)</td>
<td>23 (5%)</td>
</tr>
<tr>
<td>Expired</td>
<td>49 (9%)</td>
<td>29 (6%)</td>
</tr>
<tr>
<td>Other</td>
<td>24 (4%)</td>
<td>21 (4%)</td>
</tr>
</tbody>
</table>

Results not statistically significant
Effect of FAST-ED Implementation and Age on Distance Patients Travel from Scene to Comprehensive Stroke Center

Amy K. Starosciak, Ph.D., Maygret Ramirez, ARNP, Virginia Ramos, RN, Ivis C. Gonzalez, RN, Joseph M. Souchak, Camila Toce Carrión, Jayme Strauss, MSN, RN, MBA, Felipe De Los Rios La Rosa, M.D.

INTRODUCTION

The Field Assessment Stroke Triage for Emergency Destination (FAST-ED) is a pre-hospital screening algorithm developed to detect large vessel occlusion (LVO) strokes (Table below). FAST-ED was implemented by Miami-Dade Fire Rescue (MDFR) in March 2017 with a goal to bring potential LVOs directly to a Comprehensive Stroke Center (CSC) by bypassing Primary Stroke Centers and Acute Stroke Ready Hospitals. We assessed whether use of the FAST-ED increased the distance patients traveled to a medical facility.

<table>
<thead>
<tr>
<th>Item</th>
<th>Score</th>
<th>Item</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm Weakness</td>
<td></td>
<td>Denial/Neglect</td>
<td></td>
</tr>
<tr>
<td>No drift</td>
<td>0</td>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Drift or some effort against gravity</td>
<td>1</td>
<td>Extinction to bilateral simultaneous stimulation in one sensory modality</td>
<td>1</td>
</tr>
<tr>
<td>No effort against gravity or no movement</td>
<td>2</td>
<td>Does not recognize own limb or orients only to one side of the body</td>
<td>2</td>
</tr>
<tr>
<td>Speech Changes</td>
<td></td>
<td>Eye Deviation</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>0</td>
<td>Absent</td>
<td>0</td>
</tr>
<tr>
<td>Mild to moderate</td>
<td>1</td>
<td>Partial</td>
<td>1</td>
</tr>
<tr>
<td>Severe global aphasia or mute</td>
<td>2</td>
<td>Forced deviation</td>
<td>2</td>
</tr>
<tr>
<td>Facial Palsy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal or minor paralysis</td>
<td>0</td>
<td>Partial or complete paralysis</td>
<td>1</td>
</tr>
</tbody>
</table>

RESULTS

- 825 acute stroke alerts were reviewed
- 279 cases in Period A, 259 in Period B, 287 in Period C

Figure 1. Three comparison time periods: B, C, A

- A two-factor ANOVA with time period (A, B, C) and age group (<80, ≥80) as independent variables determined if FAST-ED implementation and age affected how far patients traveled via ambulance
- Patients ≥80 years traveled shorter distances than those <80 years regardless of time period [F(1,5)=16.124, p<0.001] (Fig. 2)

Figure 3. Effect of Time Period on Distance Traveled

- Using three months of data in each period, there was a marginally significant age *x* time interaction, but it was non-significant with six months of data in each period
- No clear pattern for effect of sex was found using a three-factor ANOVA

CONCLUSIONS

- The FAST-ED EMS initiative to bypass to a CSC did not lead to an increase in distance traveled by patients
- This finding suggests that few patients actually are bypassing other centers
- People ≥80 years traveled shorter distances overall compared to people <80
- Older populations in the county tend to live in developed regions near medical facilities, whereas younger populations tend to live in newer, more affordable regions further from these centers

DISCLOSURES

There are no financial disclosures related to this study.

Starosciak AK et al., *International Stroke Conference*, 2018
Conclusions

• Main effect of **age** on distance traveled
 – People 80 years and above traveled shorter distances than those less than 80

• No main effect of **time** period on distance traveled
 – FAST-ED implementation made **no difference** on how far patients travel via EMS

• No **age x time** interaction
Conclusions

• Effect of age likely the result of where people tend to live in SW Miami-Dade
• People who have lived near Baptist Hospital are likely to have lived in that location for decades
• Younger generations move out to more affordable areas further from the hospital
Next Steps

- Jackson Memorial/University of Miami and other Comprehensive Stroke Centers are sharing data and collaborating on a county-wide analysis of FAST-ED implementation
 - Turnaround times
 - 90-day outcomes
• Neuro Research Department
 – Maygret Ramirez, ARNP
 – Virginia Ramos, ARNP
 – Ivis Gonzalez, RN
 – Felix Ruiz
 – Rosa Rodriguez

• Students
 – Camila Tocre Carrion
 – Joseph Souchak
 – Jake Levine
 – Jesse Miller