Examining the Use of Rapid Polymerase Chain Reaction Assay in Optimizing Antimicrobial Usage in Respiratory Viral Infections

Deandra Romero
West Kendall Baptist Hospital, deandrar@baptisthealth.net

Ana Lopez-Samblas
West Kendall Baptist Hospital, anals@baptisthealth.net

Maria Rojo-Carlo
West Kendall Baptist Hospital, MariaRoj@baptisthealth.net

Follow this and additional works at: https://scholarlycommons.baptisthealth.net/se-all-publications

Citation
Romero, Deandra; Lopez-Samblas, Ana; and Rojo-Carlo, Maria, "Examining the Use of Rapid Polymerase Chain Reaction Assay in Optimizing Antimicrobial Usage in Respiratory Viral Infections" (2018). All Publications. 2748.
https://scholarlycommons.baptisthealth.net/se-all-publications/2748
Examining the use of rapid polymerase chain reaction assay in optimizing antimicrobial usage in respiratory viral infections.
Deandra Romero, PharmD; Maria Rojo-Carlo, PharmD, BCPS; Ana Lopez-Samblas, PharmD, FSHP

Background

- Respiratory infections account for over 5 million deaths worldwide.
- Historically, respiratory pathogen testing has included the use of cultures and antigen-testing.
- Rapid polymerase chain reaction (PCR) assay:
 - Fast, effective identification of 17 viral pathogens
 - 95% sensitive and 99% specific
 - Turnaround time ~ 1 hour

<table>
<thead>
<tr>
<th>Pathogen Detected</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td>Coronavirus HKU1</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td>Coronavirus NL63</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td>Coronavirus 229E</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td>Coronavirus OC43</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td>Human Metapneumovirus</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td>Human Rhinovirus/ Enterovirus</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td>Influenza A</td>
<td>95%</td>
<td>99%</td>
</tr>
<tr>
<td>Respiratory Syncytial Virus</td>
<td>95%</td>
<td>99%</td>
</tr>
</tbody>
</table>

- Targeted therapies exist only for influenza infections.
- Agents are most effective in reducing patient’s symptoms and duration of illness if used within 48 hours of symptom onset.
- Other practices have included the use of procalcitonin levels to aid in the identification of bacterial infections.
- Higher levels are associated with bacterial infections
- Studies:
 - FilmArray® respiratory panel resulted in decreased admission rates, duration of antimicrobial use, length of stay, and amount of chest imaging performed.
 - PCR assay resulted in a decrease in antibiotic usage only in patients who tested positive for influenza virus.
 - Procalcitonin levels and respiratory panel results, alone or in combination, are seldom associated with the discontinuation of antibiotic therapy upon diagnosis of viral infection.
- All studies highlight the effectiveness of PCR technology in identifying viral infections.
- Different findings suggest the need to further evaluate the usefulness of rapid PCR technology in optimizing antimicrobial therapy in respiratory infections.

Objective

- The objective is to examine the use of viral PCR assays in the management of respiratory viral infections in a community hospital.
- The study will describe viral PCR use in identifying viral pathogens, evaluating appropriate treatment, and de-escalating of antimicrobial therapy when indicated.

Methods

- An exploratory analysis using medical chart reviews will be conducted using daily molecular result reports provided to the pharmacy.
- Inclusion criteria: Adults 18 years of age who received viral PCR microbiology testing for respiratory infections between July 1, 2017 and March 31, 2018.
- Exclusion: Patients with a documented viral respiratory infection 2 weeks prior to the time of admission.
- Patients will be randomly selected (every 6th patient) for a total population size of 150 patients.
- Data collection:
 1. Viral PCR results (time of results & pathogen identification)
 2. Diagnostic labs
 1. Procalcitonin level (Y-high, Y-low, N)
 2. Influenza A & B antigen testing (Y-positive, Y-negative, N)
 3. Initial therapy
 1. Antimicrobial and/or antiviral therapy
 2. Time of initial therapy
 4. If applicable, antibiotic prescribed and documented indication
 5. Therapy modification upon respiratory results
 1. Y/N (e.g., discontinuation of antibiotic or start of antiviral therapy)
 2. Time of therapy modification

- Preliminary Results

 - Preliminary data demonstrates 26.7% (16/60) of patients who had PCR assay testing were determined to be positive for a respiratory viral infection.
 - Most reported virus: rhinovirus/enterovirus (10/16, 62.5%).
 - In addition to PCR testing, 1 in every 3 patients had an influenza A & B antigen test (18/60, 30%) and 61.7% had a procalcitonin level.
 - Patients who were positive for respiratory viral infections were managed appropriately taking into account any co-infection.
 - When antimicrobial therapy was not indicated, the antimicrobial de-escalation time was approximately 4 hrs.

Conclusion

Research in progress.

Implications for Practice

- Optimize treatment using PCR assay as a diagnostic tool.
- Reduce unnecessary diagnostic tests.
- Decrease the inappropriate use of antimicrobials in viral respiratory infections.

Acknowledgement

We would like to thank Dr. Tanya Cohn from West Kendall Baptist Hospital.

Disclosure

Authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation.

References